Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dysfunction of store-operated calcium channel in muscle cells lacking mg29


The store-operated calcium channel (SOC) located in the plasma membrane (PM) mediates capacitative entry of extracellular calcium after depletion of intracellular calcium stores in the endoplasmic or sarcoplasmic reticulum (ER/SR)1,2. An intimate interaction between the PM and the ER/SR is essential for the operation of this calcium signalling pathway3,4,5. Mitsugumin 29 (MG29) is a synaptophysin-family-related protein located in the junction between the PM and SR of skeletal muscle6,7. Here, we identify SOC in skeletal muscle and characterise its regulation by MG29 and the ryanodine receptor (RyR) located in the SR. Targeted deletion of mg29 alters the junctional membrane structure, causes severe dysfunction of SOC and SR calcium homeostasis and increases the susceptibility of muscle to fatigue stimulation8. Severe dysfunction of SOC is also identified in muscle cells lacking both type 1 and type 3 RyRs, indicating that SOC activation requires an intact interaction between the PM and the SR, and is linked to conformational changes of RyRs. Whereas defective SOC seems to be inconsequential to short-term excitation–contraction coupling, the slow cumulative calcium entry through SOC is crucial for long-term calcium homeostasis, such that reduced SOC activity exaggerates muscle fatigue under conditions of intensive exercise.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defective movement of calcium across the PM in skeletal muscle lacking MG29.
Figure 2: Dysfunction of SOC in mg29−/− myotubes.
Figure 3: RyR-mediated activation of SOC in skeletal muscle.
Figure 4: Inhibition of SOC activity in skeletal muscle by 2-APB.
Figure 5: The effects of SKF-96365 and extracellular calcium on the fatigue sensitivity of soleus muscles.


  1. Putney, J. W. Jr Cell Calcium 21, 257–261 (1997).

    Article  CAS  Google Scholar 

  2. Hoth, M. & Penner, R. Nature 355, 353–355 (1992).

    Article  CAS  Google Scholar 

  3. Berridge, M. J. Neuron 21, 13–26 (1998).

    Article  CAS  Google Scholar 

  4. Patterson, R. L., van Rossum, D. B. & Gill, D. L. Cell 98, 487–499 (1999).

    Article  CAS  Google Scholar 

  5. Kiselyov, K. I. et al. Mol. Cell 6, 421–431 (2000).

    Article  CAS  Google Scholar 

  6. Takeshima, H. et al. Biochem. J. 331, 317–322 (1998).

    Article  CAS  Google Scholar 

  7. Nishi, M. et al. J. Cell Biol. 147, 1473–1480 (1999).

    Article  CAS  Google Scholar 

  8. Nagaraj, R. Y. et al. Physiol. Genomics 4, 43–49 (2000).

    Article  CAS  Google Scholar 

  9. Franzini-Armstrong, C. & Jorgensen, A. O. Ann. Rev. Physiol. 56, 509–534 (1994).

    Article  CAS  Google Scholar 

  10. Johnston, P. A. Jahn, R. & Sudhof, T. C. J. Biol. Chem. 264, 1265–1273 (1989).

    Google Scholar 

  11. Yang, D. et al. J. Biol. Chem. 276, 40210–40214 (2001).

    Article  CAS  Google Scholar 

  12. Doi, S., Damron, D. S., Horibe, M. & Murray, P. A. Am. J. Physiol. 278, L118–L130 (2000).

    Article  CAS  Google Scholar 

  13. Kurebayashi, N. & Ogawa, Y. J. Physiol. 533, 185–199 (2001).

    Article  CAS  Google Scholar 

  14. Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R. & Dawson, A. P. Proc. Natl Acad. Sci. USA 87, 2466–2470 (1990).

    Article  CAS  Google Scholar 

  15. Merritt, J. E. et al. Biochem. J. 271, 515–522 (1990).

    Article  CAS  Google Scholar 

  16. Fasolato, C., Hoth, M. & Penner, R. Pflugers Arch. 423, 225–231 (1993).

    Article  CAS  Google Scholar 

  17. Takeshima, H. et al. Nature 369, 556–559 (1994).

    Article  CAS  Google Scholar 

  18. Takeshima, H. et al. J. Biol. Chem. 271, 19649–19652 (1996).

    Article  CAS  Google Scholar 

  19. Ikemoto, T. et al. J. Physiol. 501, 305–312 (1997).

    Article  CAS  Google Scholar 

  20. Takeshima, H. et al. Nature 339, 439–445 (1989).

    Article  CAS  Google Scholar 

  21. Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q. Y. & Meissner, G. Nature 331, 315–319 (1988).

    Article  CAS  Google Scholar 

  22. Leung, Y. M., Kwan, C. Y. & Loh, T. T. Biochem. Pharmacol. 51, 605–612 (1996).

    Article  CAS  Google Scholar 

  23. Prakriya, M. & Lewis, R. S. J. Physiol. 536, 3–19 (2001).

    Article  CAS  Google Scholar 

  24. Cota, G. & Stefani, E. J. Gen. Physiol. 94, 937–951 (1989).

    Article  CAS  Google Scholar 

  25. Nakai, J. et al. Nature 380, 72–75 (1996).

    Article  CAS  Google Scholar 

  26. Rios, E., Ma, J. & Gonzalez, A. J. Muscle Res. Cell Motil. 12, 127–135 (1991).

    Article  CAS  Google Scholar 

  27. Schneider, M. F. Annu. Rev. Physiol. 56, 463–484 (1994).

    Article  CAS  Google Scholar 

  28. Pan, Z., Damron, D., Nieminen, A. L., Bhat, M. B. & Ma, J. J. Biol. Chem. 275, 19978–19984 (2000).

    Article  CAS  Google Scholar 

Download references


We thank E. Rios, E. Lakatta, N. Partridge, J. Parness and C. Sciortino for helpful comments on the manuscript. We also appreciate the generous help and support from M. Bhat and D. Damron for the Fura-2 calcium studies. This work was supported by grants from the National Institutes of Health and the American Heart Association.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jianjie Ma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pan, Z., Yang, D., Nagaraj, R. et al. Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat Cell Biol 4, 379–383 (2002).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing