Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Frodo interacts with Dishevelled to transduce Wnt signals

Abstract

Dishevelled (Dsh) is required for the specification of cell fate and polarity by secreted Wnt proteins. Frodo, a novel conserved Dsh-binding protein, synergized with Xenopus Dsh (XDsh) in secondary axis induction in Xenopus laevis embryos. A dominant inhibitory construct and antisense oligonucleotide-mediated depletion of Frodo inhibited axial development in response to XDsh and XWnt8, and suppressed transcriptional activation of a reporter construct. At later embryonic stages, both dominant negative Frodo and antisense oligonucleotides interfered with the expression of regional neural markers and caused eye deficiencies, indicating that Frodo is required for normal eye and neural tissue development. Full-length Frodo RNA suppressed these loss-of-function phenotypes, attesting to their specificity. These findings establish a function for Frodo as an essential positive regulator of Wnt signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deduced amino acid sequence and conserved regions of Frodo.
Figure 2: Expression of Frodo RNA during embryonic development.
Figure 3: Identification of protein domains involved in the Frodo–XDsh interaction.
Figure 4: The effects of Frodo and FrdC on Dsh activity.
Figure 5: Frodo functions upstream of the β-catenin degradation complex in axis induction.
Figure 6: Suppression of Dsh function in Frodo-depleted embryos.
Figure 7: An essential function of Frodo in eye development.
Figure 8: Eye and neural tissue abnormalities in Frodo-depleted embryos.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Nusse, R. & Varmus, H. E. Wnt genes. Cell 69, 1073–1087 (1992).

    Article  CAS  Google Scholar 

  2. Gumbiner, B. M. Propagation and localization of Wnt signaling. Curr. Opin. Genet. Dev. 8, 430–435 (1998).

    Article  CAS  Google Scholar 

  3. Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science 287, 1606–1609 (2000).

    Article  CAS  Google Scholar 

  4. Sokol, S. Y. Wnt signaling and dorso-ventral axis specification in vertebrates. Curr. Opin. Genet. Dev. 9, 405–410 (1999).

    Article  CAS  Google Scholar 

  5. Yanagawa, S. et al. The dishevelled protein is modified by wingless signaling in Drosophila. Genes Dev. 9, 1087–1097 (1995).

    Article  CAS  Google Scholar 

  6. Sokol, S. Y. Analysis of Dishevelled signalling pathways during Xenopus development. Curr. Biol. 6, 1456–1467 (1996).

    Article  CAS  Google Scholar 

  7. Boutros, M. & Mlodzik, M. Dishevelled: at the crossroads of divergent intracellular signaling pathways. Mech. Dev. 83, 27–37 (1999).

    Article  CAS  Google Scholar 

  8. Axelrod, J. D., Miller, J. R., Shulman, J. M., Moon, R. T. & Perrimon, N. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev. 12, 2610–2622 (1998).

    Article  CAS  Google Scholar 

  9. Boutros, M., Paricio, N., Strutt, D. I. & Mlodzik, M. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 94, 109–118 (1998).

    Article  CAS  Google Scholar 

  10. Shulman, J. M., Perrimon, N. & Axelrod, J. D. Frizzled signaling and the developmental control of cell polarity. Trends Genet. 14, 452–458 (1998).

    Article  CAS  Google Scholar 

  11. Strutt, D. I., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling. Nature 387, 292–295 (1997).

    Article  CAS  Google Scholar 

  12. Moriguchi, T. et al. Distinct domains of mouse dishevelled are responsible for the c-Jun N-terminal kinase/stress-activated protein kinase activation and the axis formation in vertebrates. J. Biol. Chem. 274, 30957–30962 (1999).

    Article  CAS  Google Scholar 

  13. Wallingford, J. B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    Article  CAS  Google Scholar 

  14. Tada, M. & Smith, J. C. XWnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127, 2227–2238 (2000).

    CAS  PubMed  Google Scholar 

  15. Ponting, C. P., Phillips, C., Davies, K. E. & Blake, D. J. PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays 19, 469–479 (1997).

    Article  CAS  Google Scholar 

  16. Zeng, L. et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181–192 (1997).

    Article  CAS  Google Scholar 

  17. Ponting, C. P. & Bork, P. Pleckstrin's repeat performance: a novel domain in G-protein signaling? Trends Biochem. Sci. 21, 245–246 (1996).

    Article  CAS  Google Scholar 

  18. Li, L. et al. Axin and Frat1 interact with Dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J. 8, 4233–4240 (1999).

    Article  Google Scholar 

  19. Smalley, M. J. et al. Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J. 18, 2823–2835 (1999).

    Article  CAS  Google Scholar 

  20. Itoh, K., Antipova, A., Ratcliffe, M. J. & Sokol, S. Interaction of dishevelled and Xenopus axin-related protein is required for wnt signal transduction. Mol. Cell. Biol. 20, 2228–2238 (2000).

    Article  CAS  Google Scholar 

  21. Yan, D. et al. Cell autonomous regulation of multiple Dishevelled-dependent pathways by mammalian Nkd. Proc. Natl Acad. Sci. USA 98, 3802–3807 (2001).

    Article  CAS  Google Scholar 

  22. Rousset, R. et al. Naked cuticle targets Dishevelled to antagonize Wnt signal transduction. Genes Dev. 15, 658–671 (2001).

    Article  CAS  Google Scholar 

  23. Peters, J. M., McKay, R. M., McKay, J. P. & Graff, J. M. Casein kinase I transduces Wnt signals. Nature 401, 345–350 (1999).

    Article  CAS  Google Scholar 

  24. Sakanaka, C., Leong, P., Xu, L., Harrison, S. D. & Williams, L. T. Casein kinase-ɛ in the Wnt pathway: regulation of β-catenin function. Proc. Natl Acad. Sci. USA 96, 12548–12552 (1999).

    Article  CAS  Google Scholar 

  25. Willert, K., Brink, M., Wodarz, A., Varmus, H. & Nusse, R. Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J. 16, 3089–3096 (1997).

    Article  CAS  Google Scholar 

  26. Sun, T. Q. et al. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signaling. Nature Cell Biol. 3, 628–636 (2001).

    Article  CAS  Google Scholar 

  27. Park M., Moon R. T. The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nature Cell Biol. 4, 20–25 (2002).

    Article  CAS  Google Scholar 

  28. Habas R., Kato Y., He X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107, 843–854 (2001).

    Article  CAS  Google Scholar 

  29. Blake, D. J. et al. Coiled-coil regions in the carboxy-terminal domains of dystrophin and related proteins: potentials for protein-protein interactions. Trends Biochem. Sci. 20, 133–135 (1995).

    Article  CAS  Google Scholar 

  30. Kornau, H. C., Schenker, L. T., Kennedy, M. B. & Seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740 (1995).

    Article  CAS  Google Scholar 

  31. Rothbacher, U. et al. Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J. 19, 1010–1022 (2000).

    Article  CAS  Google Scholar 

  32. Guger, K. A. & Gumbiner, B. M. β-Catenin has Wnt-like activity and mimics the Nieuwkoop signaling center in Xenopus dorsal-ventral patterning. Dev. Biol. 172, 115–125 (1995).

    Article  CAS  Google Scholar 

  33. Summerton, J. & Weller, D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187–195 (1997).

    Article  CAS  Google Scholar 

  34. Itoh, K., Jacob, J. & Sokol, S. Y. A role for Xenopus Frizzled 8 in dorsal development. Mech. Dev. 74, 145–157 (1998).

    Article  CAS  Google Scholar 

  35. Harland, R. & Gerhart, J. Formation and function of Spemann's organizer. Ann. Rev. Cell. Dev. Biol. 13, 611–667 (1997).

    Article  CAS  Google Scholar 

  36. Mathers, P. H., Grinberg, A., Mahon, K. A., & Jamrich, M. The Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603–607 (1997).

    Article  CAS  Google Scholar 

  37. Rasmussen, J. T. et al. Regulation of eye development by frizzled signaling in Xenopus. Proc. Natl Acad. Sci. USA 98, 3861–3866 (2001).

    Article  CAS  Google Scholar 

  38. Miller, J. R. et al. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J. Cell Biol. 146, 427–437 (1999).

    Article  CAS  Google Scholar 

  39. Liu P. et al. Requirement for Wnt3 in vertebrate axis formation. Nature Genet. 22, 361–365 (1999).

    Article  CAS  Google Scholar 

  40. Sumanas, S., Strege, P., Heasman, J. & Ekker, S. C. The putative Wnt receptor Xenopus frizzled-7 functions upstream of β-catenin in vertebrate dorsoventral mesoderm patterning. Development 127, 1981–1990 (2000).

    CAS  PubMed  Google Scholar 

  41. Sokol, S. Y. A role for Wnts in morphogenesis and tissue polarity. Nature Cell Biol. 2, E124–E126 (2000).

    Article  CAS  Google Scholar 

  42. Winklbauer R., Medina A., Swain R. K. & Steinbeisser H. Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature 413, 856–860 (2001).

    Article  CAS  Google Scholar 

  43. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

    Google Scholar 

  44. Holowacz, T. & Sokol, S. Y. FGF is required for posterior neural patterning but not for neural induction. Dev. Biol. 205, 296–308 (1999).

    Article  CAS  Google Scholar 

  45. Krieg, P. A. & Melton, D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12, 7057–7070 (1984).

    Article  CAS  Google Scholar 

  46. Newport, J. & Kirschner, M. A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–686 (1982).

    Article  CAS  Google Scholar 

  47. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin). (North Holland Publ., Amsterdam, Holland, 1967).

    Google Scholar 

  48. Kao, K. R. & Elinson, R. P. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev. Biol. 127, 64–77 (1988).

    Article  CAS  Google Scholar 

  49. Itoh, K., Krupnik, V. E. & Sokol, S. Y. Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and β-catenin. Curr. Biol. 8, 591–594 (1998).

    Article  CAS  Google Scholar 

  50. Sive, H. L., Grainger, R. M. & Harland, R. M. Early Development of Xenopus laevis, Course manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1995).

    Google Scholar 

Download references

Acknowledgements

We thank K. Itoh for the initial identification of Frodo fragments in the yeast two-hybrid screen. We are grateful to I. Dawid, J. Graff, B. Gumbiner, A. Hemmati-Brivanlou, R. Harland, M. Jamrich, P. Lemaire, R. Moon, E. De Robertis and J. Smith for plasmids, and T. Komiya for the Xenopus ovary cDNA λZAP library. We also thank J. Green, Y. Kamberov and M. Ratcliffe for comments on the manuscript. This work was supported by the grants from the March of Dimes Birth Defects Foundation and the National Institutes of Health to S.S. and the Deutsche Forschungsgemeinschaft to J.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Y. Sokol.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gloy, J., Hikasa, H. & Sokol, S. Frodo interacts with Dishevelled to transduce Wnt signals. Nat Cell Biol 4, 351–357 (2002). https://doi.org/10.1038/ncb784

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb784

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing