Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI

Abstract

The proper function of Rho GTPases requires precise spatial and temporal regulation of effector interactions. Integrin-mediated cell adhesion modulates the interaction of GTP-Rac with its effectors by controlling GTP-Rac membrane targeting. Here, we show that the translocation of GTP-Rac to membranes is independent of effector interactions, but instead requires the polybasic sequence near the carboxyl terminus. Cdc42 also requires integrin-mediated adhesion for translocation to membranes. A recently developed fluorescence resonance energy transfer (FRET)-based assay yields the surprising result that, despite its uniform distribution, the interaction of activated V12-Rac with a soluble, cytoplasmic effector domain is enhanced at specific regions near cell edges and is induced locally by integrin stimulation. This enhancement requires Rac membrane targeting. We show that Rho-GDI, which associates with cytoplasmic GTP-Rac, blocks effector binding. Release of Rho-GDI after membrane translocation allows Rac to bind to effectors. Thus, Rho-GDI confers spatially restricted regulation of Rac–effector interactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rac membrane targeting is independent of effector interactions but requires the C-terminal polybasic sequence.
Figure 2: Integrins regulate Cdc42 membrane targeting similarly to Rac.
Figure 3: FRET analysis demonstrates that GTP-Rac coupling to effectors is locally enhanced in lamellipodia.
Figure 4: GTP-Rac coupling to effectors is locally induced by integrin stimulation and requires Rac membrane targeting.
Figure 5: Rho-GDI blocks GTP-Rac effector coupling.
Figure 6: Model for integrin-regulated localized enhancement of Rac membrane targeting and effector coupling.

Similar content being viewed by others

References

  1. de Curtis, I. Cell migration: GAPs between membrane traffic and the cytoskeleton. EMBO Rep. 2, 277–281 (2001).

    Article  CAS  Google Scholar 

  2. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  3. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  4. Bishop, A. L. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348 Pt 2, 241–255 (2000).

    Article  CAS  Google Scholar 

  5. Olofsson, B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal. 11, 545–554 (1999).

    Article  CAS  Google Scholar 

  6. Seabra, M. C. Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal. 10, 167–172 (1998).

    Article  CAS  Google Scholar 

  7. Keep, N. H. et al. A modulator of rho family G proteins, Rho-GDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure 5, 623–633 (1997).

    Article  CAS  Google Scholar 

  8. del Pozo, M. A., Price, L. S., Alderson, N. B., Ren, X. D. & Schwartz, M. A. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J. 19, 2008–2014 (2000).

    Article  CAS  Google Scholar 

  9. Symons, M. Adhesion signalling: PAK meets Rac on solid ground. Curr. Biol. 10, R535–R537 (2000).

  10. Kraynov, V. S. et al. Localized Rac activation dynamics visualized in living cells. Science 290, 333–337 (2000).

    Article  CAS  Google Scholar 

  11. Dharmawardhane, S., Sanders, L. C., Martin, S. S., Daniels, R. H. & Bokoch, G. M. Localization of p21-Activated Kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J. Cell Biol. 138, 1–14 (1997).

    Article  Google Scholar 

  12. Lamarche, N. et al. Rac and cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519–529 (1996).

    Article  CAS  Google Scholar 

  13. Westwick, J. K. et al. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17, 1324–1335 (1997).

    Article  CAS  Google Scholar 

  14. Price, L. S., Leng, J., Schwartz, M. A. & Bokoch, G. M. Activation of rac and cdc42 by integrins mediates cell spreading. Mol. Biol. Cell 9, 1863–1871 (1998).

    Article  CAS  Google Scholar 

  15. Hancock, J. F., Paterson, H. & Marshall, C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63, 133–139 (1990).

    Article  CAS  Google Scholar 

  16. Knaus, U. G., Wang, Y., Reilly, A. M., Warnock, D. & Jackson, J. H. Structural requirements for PAK activation by Rac GTPases. J. Biol. Chem. 273, 21512–21518 (1998).

    Article  CAS  Google Scholar 

  17. Kozma, R., Ahmed, S., Best, A. & Lim, L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15, 1942–1952 (1995).

    Article  CAS  Google Scholar 

  18. Jordan, J. D., Landau, E. M. & Iyengar, R. Signalling networks: the origins of cellular multitasking. Cell 103, 193–200 (2000).

    Article  CAS  Google Scholar 

  19. Teruel, M. N. & Meyer, T. Translocation and reversible localization of signalling proteins: a dynamic future for signal transduction. Cell 103, 181–184 (2000).

    Article  CAS  Google Scholar 

  20. Kiosses, W. B., Shattil, S. J., Pampori, N. & Schwartz, M. A. Rac recruits high-affinity integrin αvβ3 to lamellipodia in endothelial cell migration. Nature Cell Biol. 3, 316–320 (2001).

    Article  CAS  Google Scholar 

  21. Miyamoto, S. et al. Integrin function: molecular hierarchies of cytoskeletal and signalling proteins. J. Cell Biol. 131, 791–805 (1995).

    Article  CAS  Google Scholar 

  22. Schwartz, M. A., Lechene, C. & Ingber, D. E. Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin α5β1, independent of cell shape. Proc. Natl Acad. Sci. USA 88, 7849–7853 (1991).

    Article  CAS  Google Scholar 

  23. Lewis, J. M. & Schwartz, M. A. Mapping in vivo associations of cytoplasmic proteins with integrin β1 cytoplasmic domain mutants. Mol. Biol. Cell 6, 151–160 (1995).

    Article  CAS  Google Scholar 

  24. Bourguignon, L. Y., Zhu, H., Shao, L. & Chen, Y. W. CD44 interaction with tiam1 promotes Rac1 signalling and hyaluronic acid-mediated breast tumor cell migration. J. Biol. Chem. 275, 1829–1838 (2000).

    Article  CAS  Google Scholar 

  25. Woods, A. & Couchman, J. R. Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol. Biol. Cell 5, 183–192 (1994).

    Article  CAS  Google Scholar 

  26. Scheffzek, K., Stephan, I., Jensen, O. N., Illenberger, D. & Gierschik, P. The Rac–Rho-GDI complex and the structural basis for the regulation of Rho proteins by Rho-GDI. Nature Struct. Biol. 7, 122–126 (2000).

    Article  CAS  Google Scholar 

  27. Hoffman, G. R., Nassar, N. & Cerione, R. A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator Rho-GDI. Cell 100, 345–356 (2000).

    Article  CAS  Google Scholar 

  28. Lian, L. Y. et al. Mapping the binding site for the GTP-binding protein Rac-1 on its inhibitor Rho-GDI-1. Structure Fold Des. 8, 47–55 (2000).

    Article  CAS  Google Scholar 

  29. Longenecker, K. et al. How Rho-GDI binds Rho. Acta Crystallogr. D. Biol. Crystallogr. 55, 1503–1515 (1999).

    Article  CAS  Google Scholar 

  30. Read, P. W. et al. Human RhoA/Rho-GDI complex expressed in yeast: GTP exchange is sufficient for translocation of RhoA to liposomes. Protein Sci. 9, 376–386 (2000).

    Article  CAS  Google Scholar 

  31. Dirac-Svejstrup, A. B., Sumizawa, T. & Pfeffer, S. R. Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI. EMBO J. 16, 465–472 (1997).

    Article  CAS  Google Scholar 

  32. Chant, J. Cell polarity in yeast. Annu. Rev. Cell Dev. Biol. 15, 365–391 (1999).

    Article  CAS  Google Scholar 

  33. Johnson, D. I. & Pringle, J. R. Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J. Cell Biol. 111, 143–152 (1990).

    Article  CAS  Google Scholar 

  34. Leng, J., Klemke, R. L., Reddy, A. C. & Cheresh, D. A. Potentiation of cell migration by adhesion-dependent cooperative signals from the GTPase Rac and Raf kinase. J. Biol. Chem. 274, 37855–37861 (1999).

    Article  CAS  Google Scholar 

  35. Habets, G. G. et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77, 537–549 (1994).

    Article  CAS  Google Scholar 

  36. Michiels, F., Habets, G. G. M., Stam, J. C., vanderKammen, R. A. & Collard, J. G. A function for rac in Tiam1-induced membrane ruffling and invasion. Nature 375, 338–340 (1995).

    Article  CAS  Google Scholar 

  37. Fukumoto, Y. et al. Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene 5, 1321–1328 (1990).

    CAS  PubMed  Google Scholar 

  38. Moriyoshi, K., Richards, L. J., Akazawa, C., O'Leary, D. D. & Nakanishi, S. Labeling neural cells using adenoviral gene transfer of membrane- targeted GFP. Neuron 16, 255–260 (1996).

    Article  CAS  Google Scholar 

  39. del Pozo, M. A., Vicente-Manzanares, M., Tejedor, R., Serrador, J. M. & Sanchez-Madrid, F. Rho GTPases control migration and polarization of adhesion molecules and cytoskeletal ERM components in T lymphocytes. Eur. J. Immunol. 29, 3609–3620 (1999).

    Article  CAS  Google Scholar 

  40. Chamberlain, C. E., Kraynov, V. S. & Hahn, K. M. Imaging spatiotemporal dynamics of Rac activation in vivo with FLAIR. Methods Enzymol. 325, 389–400 (2000).

    Article  CAS  Google Scholar 

  41. Glaven, J. A., Whitehead, I., Bagrodia, S., Kay, R. & Cerione, R. A. The Dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signalling pathways in cells. J. Biol. Chem. 274, 2279–2285 (1999).

    Article  CAS  Google Scholar 

  42. Gong, M. C. et al. Regulation by GDI of RhoA/Rho-kinase-induced Ca2+ sensitization of smooth muscle myosin II. Am. J. Physiol. Cell Physiol. 281, C257–C269 (2001).

  43. Read, P. W. & Nakamoto, R. K. Expression and purification of Rho/Rho-GDI complexes. Methods Enzymol. 325, 15–25 (2000).

    Article  CAS  Google Scholar 

  44. Renshaw, M. W., Ren, X.-D. & Schwartz, M. A. Growth factor activation of MAP kinase requires cell adhesion. EMBO J. 16, 5592–5599 (1997).

    Article  CAS  Google Scholar 

  45. Kiosses, W. B., Daniels, R. H., Otey, C., Bokoch, G. M. & Schwartz, M. A. A function for p21-activated kinase in endothelial cell migration. J. Cell. Biol. 147, 831–844 (1999).

    Article  CAS  Google Scholar 

  46. Chamberlain, C. & Hahn, K. M. Watching proteins in the wild: fluorescence methods to study protein dynamics in living cells. Traffic 1, 755–762 (2000).

    Article  CAS  Google Scholar 

  47. Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M. & Schwartz, M. A. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79, 507–513 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Read for providing plasmids for purification of Rho-GDI and prenylated Rac, A. Hall for Rac effector mutants, Y. Takai for pEFBOS-myc–Rho-GDI, J.H. Jackson for pRK5-myc–V12-Rac-6Q, K. Moriyoshi for the GAP-43–GFP plasmid and A. Woods for the 150.9 monoclonal anti-syndecan-4. We also thank C. Chamberlain for technical advice establishing the FRET assays, and S. Shattil and E. Tzima for their critical comments. This work was supported by United States Public Health Service grant RO1 GM47214 (to M.A.S) and GM39434 (to K.M.H). M.A.d.P. was supported by the Human Frontier Science Program (LT0019/1998-M) and then by a Lady Tata Memorial Trust International Award for Research in Leukemia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel Angel Del Pozo or Martin Alexander Schwartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures

Figure S1 Activated GTPases localize at the basal level of the plasma membrane. Confocal z-section series of cells expressing various GFP fusions from Fig. 2 A and C. (PDF 1139 kb)

Figure S2 Time course of integrin-induced FRET in GFP-V12 Rac cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Pozo, M., Kiosses, W., Alderson, N. et al. Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nat Cell Biol 4, 232–239 (2002). https://doi.org/10.1038/ncb759

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb759

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing