Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IFN-Stimulated transcription through a TBP-free acetyltransferase complex escapes viral shutoff

Abstract

Type I interferon (IFN) stimulates transcription through a heteromeric transcription factor that contains tyrosine-phosphorylated STAT2. We show that STAT2 recruits histone acetyltransferases (HAT) through its transactivation domain, resulting in localized transient acetylation of histones. GCN5, but not p300/CBP or PCAF, is required for STAT2 function. However, GCN5 function is impaired by the transcriptional antagonist, adenovirus E1A oncoprotein. The TFIID component TAFII130 potentiates STAT2 function, but TAFII28 or the HAT activity of TAFII250 do not, and transcriptional induction can proceed independently of the TATA-binding protein, TBP. Moreover, IFN-stimulated transcription was resistant to poliovirus-targeted degradation by TBP, and continued despite host-cell transcriptional shutoff during poliovirus infection. We conclude that a non-classical transcriptional mechanism combats an anticellular action of poliovirus, through a TBP-free TAF-containing complex and GCN5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IFN-induced histone acetylation in vivo correlates with STAT2 binding.
Figure 2: GCN5 recruitment site on STAT2 is required for transcriptional activity.
Figure 3: TAF requirements for ISG induction.
Figure 4: TBP is not required for IFN-stimulated transcription.
Figure 5: ISG expression is resistant to poliovirus 3Cpro protease.
Figure 6: Model of classical and IFN-stimulated transcriptional initiation in the presence of TBP degradation by viral proteases.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Levy, D. E. & Garcia-Sastre, A. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev. 12, 143–156 (2001).

    Article  CAS  Google Scholar 

  2. Darnell, J. E. STATs and gene regulation. Science 277, 1630–1635 (1997).

    Article  CAS  Google Scholar 

  3. Veals, S. A. et al. Subunit of an α-interferon-responsive transcription factor is related to interferon regulatory factor and myb families of DNA-binding proteins. Mol. Cell. Biol. 12, 3315–3324 (1992).

    Article  CAS  Google Scholar 

  4. Levy, D. E. Physiological significance of STAT proteins: investigations through gene disruption in vivo. Cell. Mol. Life Sci. 55, 1559–1567 (1999).

    Article  CAS  Google Scholar 

  5. Qureshi, S. A., Leung, S., Kerr, I. M., Stark, G. R. & Darnell, J. E. Function of Stat2 protein in transcriptional activation by α-interferon. Mol. Cell. Biol. 16, 288–293 (1996).

    Article  CAS  Google Scholar 

  6. Paulson, M. et al. Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J. Biol. Chem. 274, 25343–25349 (1999).

    Article  CAS  Google Scholar 

  7. Park, C., Lecomte, M.-J. & Schindler, C. Murine Stat2 is uncharacteristically divergent. Nucl. Acids Res. 27, 4191–4199 (1999).

    Article  CAS  Google Scholar 

  8. Bluyssen, H. A. R., Durbin, J. E. & Levy, D. E. ISGF3α p48, a specificity switch for IFN activated transcription factors. Cytokine Growth Factor Rev. 7, 11–17 (1996).

    Article  CAS  Google Scholar 

  9. Bhattacharya, S. et al. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-α. Nature 383, 344–347 (1996).

    Article  CAS  Google Scholar 

  10. Xu, W., Edmondson, D. G. & Roth, S. Y. Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol. Cell. Biol. 18, 5659–5669 (1998).

    Article  CAS  Google Scholar 

  11. Agalioti, T. et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell 103, 667–678 (2000).

    Article  CAS  Google Scholar 

  12. Xu, W. et al. Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development. Nature Genet. 26, 229–232 (2000).

    Article  CAS  Google Scholar 

  13. Martinez, E., Kundu, T. K., Fu, J. & Roeder, R. G. A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J. Biol. Chem. 273, 23781–23785 (1998).

    Article  CAS  Google Scholar 

  14. Wieczorek, E., Brand, M., Jacq, X. & Tora, L. Function of TAF(II)-containing complex without TBP in transcription by RNA polymerase II. Nature 393, 187–191 (1998).

    Article  CAS  Google Scholar 

  15. Brand, M., Leurent, C., Mallouh, V., Tora, L. & Schultz, P. Three-dimensional structures of the TAFII-containing complexes TFIID and TFTC. Science 286, 2151–2153 (1999).

    Article  CAS  Google Scholar 

  16. Reich, N., Pine, R., Levy, D. E. & Darnell, J. E. Transcription of interferon-stimulated genes is induced by adenovirus particles but is suppressed by E1A gene products. J. Virol. 62, 114–119 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Larner, A. C., Chaudhuri, A. & Darnell, J. E. Transcriptional induction by interferon. J. Biol. Chem. 261, 453–459 (1986).

    CAS  PubMed  Google Scholar 

  18. Leung, S., Qureshi, S. A., Kerr, I. M., Darnell, J. E. & Stark, G. R. Role of STAT2 in the α-interferon signalling pathway. Mol. Cell. Biol. 15, 1312–1317 (1995).

    Article  CAS  Google Scholar 

  19. Chakravarti, D. et al. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96, 393–403 (1999).

    Article  CAS  Google Scholar 

  20. Look, D. C. et al. Direct suppression of Stat1 function during adenoviral infection. Immunity 9, 871–880 (1998).

    Article  CAS  Google Scholar 

  21. Ogryzko, V. V. et al. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94, 35–44 (1998).

    Article  CAS  Google Scholar 

  22. Mengus, G., May, M., Carre, L., Chambon, P. & Davidson, I. Human TAF(II)135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells. Genes Dev. 11, 1381–1395 (1997).

    Article  CAS  Google Scholar 

  23. Floros, J., Ashihara, T. & Baserga, R. Characterization of ts13 cells a temperature-sensitive mutant of the G1 phase of the cell cycle. Cell Biol. Int. Rep. 259–269 (1978).

  24. Dunphy, E. L., Johnson, T., Auerbach, S. S. & Wang, E. H. Requirement for TAF(II)250 acetyltransferase activity in cell cycle progression. Mol. Cell. Biol. 20, 1134–1139 (2000).

    Article  CAS  Google Scholar 

  25. Wang, E. H., Zou, S. & Tjian, R. TAFII250-dependent transcription of cyclin A is directed by ATF activator proteins. Genes Dev. 11, 2658–2669 (1997).

    Article  CAS  Google Scholar 

  26. Levy, D. E., Larner, A. C., Chaudhuri, A., Babiss, L. E. & Darnell, J. E. Interferon-stimulated transcription: Isolation of an inducible gene and identification of its regulatory region. Proc. Natl Acad. Sci. USA 83, 8929–8933 (1986).

    Article  CAS  Google Scholar 

  27. Mirkovitch, J., Decker, T. & Darnell, J. E. Jr. Interferon induction of gene transcription analyzed by in vivo footprinting. Mol. Cell. Biol. 12, 1–9 (1992).

    Article  CAS  Google Scholar 

  28. Bluyssen, H. A. R. et al. Structure, chromosome localization and regulation of expression of the interferon-regulated mouse Ifi54/Ifi56 gene family. Genomics 24, 137–148 (1994).

    Article  CAS  Google Scholar 

  29. Baker, E., de Veer, M. J., Devenish R. J., Sutherland, G. R. & Ralph, S. J. Interferon- and virus-inducible gene ISG-60. Map position 10q23.3. Chromosome Res. 5, 572 (1997).

  30. Strubin, M. & Struhl, K. Yeast and human TFIID with altered DNA-binding specificity for TATA elements. Cell 68, 721–30. (1992).

    Article  CAS  Google Scholar 

  31. Guo, J., Hui, D. J., Merrick, W. C. & Sen, G. C. A new pathway of translational regulation mediated by eukaryotic initiation factor 3. EMBO J. 19, 6891–6899 (2000).

    Article  CAS  Google Scholar 

  32. Yalamanchili, P., Harris, K., Wimmer, E. & Dasgupta, A. Inhibition of basal transcription by poliovirus: a virus- encoded protease (3Cpro) inhibits formation of TBP-TATA box complex in vitro. J. Virol. 70, 2922–2929 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Clark, M. E., Lieberman, P. M., Berk, A. J. & Dasgupta, A. Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Mol. Cell. Biol. 13, 1232–1237 (1993).

    Article  CAS  Google Scholar 

  34. Liu, C. et al. MyoD-dependent induction during myoblast differentiation of p204, a protein also inducible by interferon. Mol. Cell. Biol. 20, 7024–7036 (2000).

    Article  CAS  Google Scholar 

  35. Sadovsky, Y. et al. Transcriptional activators differ in their responses to overexpression of TATA-box-binding protein. Mol. Cell. Biol. 15, 1554–1563 (1995).

    Article  CAS  Google Scholar 

  36. Crawford, N., Fire, A., Samuels, M., Sharp, P. A. & Baltimore, D. Inhibition of transcription factor activity by poliovirus. Cell 27, 555–561 (1981).

    Article  CAS  Google Scholar 

  37. Dani, C. et al. Characterization of the transcription products of glyceraldehyde 3-phosphate-dehydrogenase gene in HeLa cells. Eur. J. Biochem. 145, 299–304 (1984).

    Article  CAS  Google Scholar 

  38. Sonenberg, N. & Pelletier, J. Poliovirus translation: a paradigm for a novel initiation mechanism. Bioessays 11, 128–132 (1989).

    Article  CAS  Google Scholar 

  39. Gustin, K. E. & Sarnow, P. Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition. EMBO J. 20, 240–249 (2001).

    Article  CAS  Google Scholar 

  40. Iizuka, N., Chen, C., Yang, Q., Johannes, G. & Sarnow, P. Cap-independent translation and internal initiation of translation in eukaryotic cellular mRNA molecules. Curr. Top. Microbiol. Immunol. 203, 155–177 (1995).

    CAS  PubMed  Google Scholar 

  41. Holcik, M., Sonenberg, N. & Korneluk, R. G. Internal ribosome initiation of translation and the control of cell death. Trends Genet. 16, 469–473 (2000).

    Article  CAS  Google Scholar 

  42. Park, C., Li, S., Cha, E. & Schindler, C. Immune response in Stat2 knockout mice. Immunity 13, 795–804 (2000).

    Article  CAS  Google Scholar 

  43. Yu, M. et al. Cloning of a gene (RIG-G) associated with retinoic acid-induced differentiation of acute promyelocytic leukemia cells and representing a new member of a family of interferon-stimulated genes. Proc. Natl Acad. Sci. USA 94, 7406–7411 (1997).

    Article  CAS  Google Scholar 

  44. Zhang, J. J. et al. Two contact regions between Stat1 and CBP/p300 in interferon gamma signalling. Proc. Natl Acad. Sci. USA 93, 15092–15096 (1996).

    Article  CAS  Google Scholar 

  45. Korzus, E. et al. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279, 703–707 (1998).

    Article  CAS  Google Scholar 

  46. Raval, A. et al. Transcriptional coactivator, CIITA, is an acetyltransferase that bypasses a promoter requirement for TAF(II)250. Mol. Cell 7, 105–115 (2001).

    Article  CAS  Google Scholar 

  47. Beresford, G. W. & Boss, J. M. CIITA coordinates multiple histone acetylation modifications at the HLA- DRA promoter. Nature Immunol. 2, 652–657 (2001).

    Article  CAS  Google Scholar 

  48. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).

    Article  CAS  Google Scholar 

  49. Wathelet, M. G. et al. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-β enhancer in vivo. Mol. Cell 1, 507–518 (1998).

    Article  CAS  Google Scholar 

  50. Luo, R. X., Postigo, A. A. & Dean, D. C. Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–473 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Nakatani, R. Schiltz, S. Roth, M. Rosenfeld, P. Sarnow, C. Basilico, M. Garabedian, M. Pagano, O. Silvennoinen, P. Lengyel, A. García-Sastre, G. Stark, and N. Hernandez for the kind gifts of antibodies, cell lines, virus, plasmids, and primers, and for helpful advice and discussions. We particularly thank K.Gustin for the gift of poliovirus, and W. Xu for providing GCN5 before publication. We thank I. Rogatsky for primer sequences for the collagenase I promoter, M. Pagano for the primers for p27Kip1, M. Wathelet and D. Dean for helpful advice on ChIP assays, and K. Murphy for helpful comments. C. P. was supported by a Medical Scientist Training Grant (5T32GM03708) from the National Institutes of Health. This work was supported in part by research grants from the NIH (AI28900, AI46503, AI48204) and the American Heart Association (9951033T).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Levy.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulson, M., Press, C., Smith, E. et al. IFN-Stimulated transcription through a TBP-free acetyltransferase complex escapes viral shutoff. Nat Cell Biol 4, 140–147 (2002). https://doi.org/10.1038/ncb747

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing