Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes

An Author Correction to this article was published on 05 December 2022

This article has been updated

Abstract

The three GTPases Rab5, Rab4 and Rab11 regulate sequential transport steps along the endocytic/recycling pathway, and occupy distinct membrane domains on early and recycling endosomes. To address the mechanisms that regulate communication between such domains, we searched for proteins that interact with both Rab5 and Rab4. Here, we report that Rabenosyn-5, a previously identified Rab5 effector, also binds to Rab4. Rabenosyn-5 overexpression increased the association between Rab5 and Rab4 endosomal domains and decreased the fraction of Rab4- and Rab11-positive structures. This redistribution was accompanied by a faster rate of transferrin recycling from early endosomes to the cell surface and reduced transport to Rab11-containing perinuclear recycling endosomes. These effects depend on the ability of Rabenosyn-5 to interact with Rab4. We propose that divalent Rab effectors regulate protein sorting and recycling by connecting Rab domains on early endosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification and identification of common effectors of Rab5 and Rab4 by sequential affinity chromatography.
Figure 2: Rabenosyn-5 interacts directly with Rab4 and recruits hVps45 to Rab4.
Figure 3: Confocal immunofluorescence analysis of Rab5-, Rab4- and Rabenosyn-5-labelled endosomes.
Figure 4: Rabenosyn-5 binds simultaneously to Rab5 and Rab4.
Figure 5: Overexpression of Rabenosyn-5 and Rabaptin-5, but not EEA1, increases Rab5 and Rab4 colocalization.
Figure 6: Rabenosyn-5 overexpression does not change the perinuclear localization of Rab11-positive membranes.
Figure 7: Morphological analysis of transferrin transport.
Figure 8: Effects of Rabenosyn-5 overexpression on transferrin recycling and EGF degradation.

Similar content being viewed by others

Change history

References

  1. Mukherjee, S., Ghosh, R. N. & Maxfield, F. R. Endocytosis. Physiol. Rev. 77, 759–803 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Dunn, K. W., McGraw, T. E. & Maxfield, F. R. Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J. Cell Biol. 109, 3303–3314 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Hopkins, C. R. Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells. Cell 35, 321–330 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Mayor, S., Presley, J. F. & Maxfield, F. R. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J. Cell Biol. 121, 1257–1269 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Gruenberg, J. & Maxfield, F. R. Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 7, 552–563 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Rohn, W. M., Rouille, Y., Waguri, S. & Hoflack, B. Bi-directional trafficking between the trans-Golgi network and the endosomal/lysosomal system. J. Cell Sci. 113, 2093–2101 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Wilcke, M. et al. Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-Golgi network. J. Cell Biol. 151, 1207–1220 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmid, S. L., Fuchs, R., Male, P. & Mellman, I. Two distinct subpopulations of endosomes involved in membrane recycling and transport to lysosomes. Cell 52, 73–83 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Yamashiro, D. J., Tycko, B., Fluss, S. R. & Maxfield, F. R. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell 37, 789–800 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  Google Scholar 

  12. Miaczynska, M. & Zerial, M. Mosaic organization of the endocytic pathway. Exp. Cell Res. 272, 8–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Christoforidis, S., McBride, H. M., Burgoyne, R. D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol. 1, 249–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Nielsen, E. et al. Rabenosyn-5, a novel rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J. Cell Biol. 151, 601–612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Simonsen, A., Gaullier, J. M., D'Arrigo, A. & Stenmark, H. The Rab5 effector EEA1 interacts directly with syntaxin-6. J. Biol. Chem. 274, 28857–28860 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Sonnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J. & Zerial, M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 149, 901–914 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McBride, H. M. et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. van der Sluijs, P. et al. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70, 729–740 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Ullrich, O., Reinsch, S., Urbe, S., Zerial, M. & Parton, R. G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Geuze, H. J., Slot, J. W., Strous, G. J. & Schwartz, A. L. The pathway of the asialoglycoprotein-ligand during receptor-mediated endocytosis: a morphological study with colloidal gold/ligand in the human hepatoma cell line, Hep G2. Eur. J. Cell Biol. 32, 38–44 (1983).

    CAS  PubMed  Google Scholar 

  25. Griffiths, G., Back, R. & Marsh, M. A quantitative analysis of the endocytic pathway in baby hamster kidney cells. J. Cell Biol. 109, 2703–2720 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Clague, M. J. Membrane transport: Take your fusion partners. Curr. Biol. 9, R258–R260 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. VanRheenen, S. M., Cao, X., Lupashin, V. V., Barlowe, C. & Waters, M. G. Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking. J. Cell Biol. 141, 1107–1119 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cao, X., Ballew, N. & Barlowe, C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J. 17, 2156–2165 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allan, B. B., Moyer, B. D. & Balch, W. E. Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289, 444–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Vitale, G. et al. Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. EMBO J. 17, 1941–1951 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burd, C. G., Peterson, M., Cowles, C. R. & Emr, S. D. A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast. Mol. Biol. Cell 8, 1089–1104 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cormont, M., Mari, M., Galmiche, A., Hofman, P. & Le Marchand-Brustel, Y. A FYVE-finger-containing protein, Rabip4, is a Rab4 effector involved in early endosomal traffic. Proc. Natl Acad. Sci. USA 98, 1637–1642 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Daro, E., van der Sluijs, P., Galli, T. & Mellman, I. Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling. Proc. Natl Acad. Sci. USA 93, 9559–9564 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sipe, D. M., Jesurum, A. & Murphy, R. F. Absence of Na+-K+-ATPase regulation of endosomal acidification in K562 erythroleukemia cells. Analysis via inhibition of transferrin recycling by low temperatures. J. Biol. Chem. 266, 3469–3474 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Gorvel, J. P., Chavrier, P., Zerial, M. & Gruenberg, J. Rab5 controls early endosome fusion in vitro. Cell 64, 915–925 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715–728 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Murphy, C. et al. Endosome dynamics regulated by a Rho protein. Nature 384, 427–432 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Price, A., Seals, D., Wickner, W. & Ungermann, C. The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. J. Cell. Biol. 148, 1231–1238 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Olson, A. L., Knight, J. B. & Pessin, J. E. Syntaxin 4, VAMP2, and/or VAMP3/cellubrevin are functional target membrane and vesicle SNAP receptors for insulin-stimulated GLUT4 translocation in adipocytes. Mol. Cell Biol. 17, 2425–2435 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Prekeris, R., Klumperman, J., Chen, Y. A. & Scheller, R. H. Syntaxin 13 mediates cycling of plasma membrane proteins via tubulovesicular recycling endosomes. J. Cell Biol. 143, 957–971 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Christoforidis, S. & Zerial, M. Purification and identification of novel Rab effectors using affinity chromatography. Methods 20, 403–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Butner, K. A. & Kirschner, M. W. Tau protein binds to microtubules through a flexible array of distributed weak sites. J. Cell Biol. 115, 717–730 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Zacchi, P. et al. Rab17 regulates membrane trafficking through apical recycling endosomes in polarized epithelial cells. J. Cell Biol. 140, 1039–1053 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Nielsen, for many constructive comments and advice at the beginning of the project, and for anti-Rabenosyn-5 antibodies. We also thank A. Runge for technical assistance and B. Hoflack, H. McBride and K. Simons for critical reading of the manuscript and helpful comments. This work was supported by the Max Planck Society and by grants from Human Frontier Science Program (RG-0260/1999), European Union 5th Framework Programme (HPRN-CT-2000-00081) and Biomed (BMH4-97-2410) to M.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marino Zerial.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Renzis, S., Sönnichsen, B. & Zerial, M. Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nat Cell Biol 4, 124–133 (2002). https://doi.org/10.1038/ncb744

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing