Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence

Abstract

Primary fibroblasts respond to activated H-RASV12 by undergoing premature arrest, which resembles replicative senescence1. This irreversible 'fail-safe mechanism' requires p19ARF, p53 and the Retinoblastoma (Rb) family: upon their disruption, RASV12-expressing cells fail to undergo senescence and continue to proliferate1,2,3,4,5,6,7. Similarly, co-expression of oncogenes such as c-MYC or E1A rescues RASV12-induced senescence. To identify novel genes that allow escape from RASV12-induced senescence, we designed an unbiased, retroviral complementary DNA library screen. We report on the identification of DRIL1, the human orthologue of the mouse Bright and Drosophila dead ringer transcriptional regulators. DRIL1 renders primary murine fibroblasts unresponsive to RASV12-induced anti-proliferative signalling by p19ARF/p53/p21CIP1, as well as by p16INK4a. In this way, DRIL1 not only rescues RASV12-induced senescence but also causes these fibroblasts to become highly oncogenic. Furthermore, DRIL1 immortalizes mouse fibroblasts, in the presence of high levels of p16INK4a. Immortalization by DRIL1, whose product binds the pRB-controlled transcription factor E2F1 (ref. 8), is correlated with induction of E2F1 activity. Correspondingly, DRIL1 induces the E2F1 target Cyclin E1, overexpression of which is sufficient to trigger escape from senescence. Thus, DRIL1 disrupts cellular protection against RASV12-induced proliferation downstream of the p19ARF/p53 pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DRIL1 bypasses normal and RasV12-induced senescence in primary mouse fibroblasts.
Figure 2: DRIL1 bypasses RasV12-induced senescence with intact p16INK4a/p19ARF/p53/p21CIP1 signalling.
Figure 3: DRIL1-mediated bypass of spontaneous and RasV12-induced senescence is correlated with the induction of cyclin E1.
Figure 4: DRIL1-induced E2F1–cyclin-E1 signalling contributes to senescence bypass.

Similar content being viewed by others

References

  1. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  2. Kamijo, T. et al. Cell 91, 649–659 (1997).

    Article  CAS  Google Scholar 

  3. Palmero, I., Pantoja, C. & Serrano, M. Nature 395, 125–126 (1998).

    Article  CAS  Google Scholar 

  4. Sherr, C. J. Genes Dev. 12, 2984–2991 (1998).

    Article  CAS  Google Scholar 

  5. Tanaka, N. et al. Cell 77, 829–839 (1994).

    Article  CAS  Google Scholar 

  6. Sage, J. et al. Genes Dev. 14, 3037–3050 (2000).

    Article  CAS  Google Scholar 

  7. Peeper, D. S., Dannenberg, J. H., Douma, S., te Riele, H. & Bernards, R. Nature Cell Biol. 3, 198–203 (2001).

    Article  CAS  Google Scholar 

  8. Suzuki, M. et al. Oncogene 17, 853–865 (1998).

    Article  CAS  Google Scholar 

  9. Lee, G. H., Ogawa, K. & Drinkwater, N. R. Am. J. Pathol. 147, 1811–1822 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kortschak, R. D. et al. Genomics 51, 288–292 (1998).

    Article  CAS  Google Scholar 

  11. Herrscher, R. F. et al. Genes Dev. 9, 3067–3082 (1995).

    Article  CAS  Google Scholar 

  12. Gregory, S. L., Kortschak, R. D., Kalionis, B. & Saint, R. Mol. Cell. Biol. 16, 792–799 (1996).

    Article  CAS  Google Scholar 

  13. Kortschak, R. D., Tucker, P. W. & Saint, R. Trends Biochem. Sci. 25, 294–299 (2000).

    Article  CAS  Google Scholar 

  14. Jacobs, J. J. et al. Nature Genet. 26, 291–299 (2000).

    Article  CAS  Google Scholar 

  15. Zindy, F. et al. Genes Dev. 12, 2424–2433 (1998).

    Article  CAS  Google Scholar 

  16. Pantoja, C. & Serrano, M. Oncogene 18, 4974–4982 (1999).

    Article  CAS  Google Scholar 

  17. Randle, D. H., Zindy, F., Sherr, C. J. & Roussel, M. F. Proc. Natl Acad. Sci. USA 98, 9654–9659 (2001).

    Article  CAS  Google Scholar 

  18. Lundberg, A. S. & Weinberg, R. A. Mol. Cell. Biol. 18, 753–761 (1998).

    Article  CAS  Google Scholar 

  19. Haas, K. et al. Oncogene 15, 2615–2623 (1997).

    Article  CAS  Google Scholar 

  20. Karsunky, H. et al. Oncogene 18, 7816–7824 (1999).

    Article  CAS  Google Scholar 

  21. Keyomarsi, K. & Herliczek, T. W. Prog. Cell Cycle Res. 3, 171–191 (1997).

    Article  CAS  Google Scholar 

  22. Dannenberg, J. H., van Rossum, A., Schuijff, L. & te Riele, H. Genes Dev. 14, 3051–3064 (2000).

    Article  CAS  Google Scholar 

  23. Ohtani, K., DeGregori, J. & Nevins, J. R. Proc. Natl. Acad. Sci. USA 92, 12146–12150 (1995).

    Article  CAS  Google Scholar 

  24. Dimri, G. P., Itahana, K., Acosta, M. & Campisi, J. Mol. Cell. Biol. 20, 273–285 (2000).

    Article  CAS  Google Scholar 

  25. Johnson, D. G., Cress, W. D., Jakoi, L. & Nevins, J. R. Proc. Natl Acad. Sci. USA 91, 12823–12827 (1994).

    Article  CAS  Google Scholar 

  26. Pierce, A. M., Fisher, S. M., Conti, C. J. & Johnson, D. G. Oncogene 16, 1267–1276 (1998).

    Article  CAS  Google Scholar 

  27. Lukas, J., Petersen, B. O., Holm, K., Bartek, J. & Helin, K. Mol. Cell. Biol. 16, 1047–1057 (1996).

    Article  CAS  Google Scholar 

  28. Alevizopoulos, K., Vlach, J., Hennecke, S. & Amati, B. EMBO J. 16, 5322–5333 (1997).

    Article  CAS  Google Scholar 

  29. O'Hagan, R. C. et al. Genes Dev. 14, 2185–2191 (2000).

    Article  CAS  Google Scholar 

  30. Groth, A., Weber, J. D., Willumsen, B. M., Sherr, C. J. & Roussel, M. F. J. Biol. Chem. 275, 27473–27480 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Sherr for generously providing ARF−/− MEFs, N. Drinkwater for the ts T-antigen plasmid, P. Sicinski for Cyclin D1−/− MEFs, G. Nolan for retroviral packaging cells, T. van Wezel for invaluable help with PCR, J. van der Sman for help with analysis of the screen, H. Starreveld and the animal facility for help with oncogenicity assays, P. Tucker for reagents and for sharing unpublished observations, our colleagues for helpful discussions, and A. Berns, R. Agami, R. Kortlever and B. Rowland for reading the manuscript critically. This work was supported by grants from the Dutch Cancer Society, the Human Frontiers Science Program (HFSP) and the National Institutes of Health (USA). G.D. is the Birnbaum Scholar of the Leukemia and Lymphoma Society of America and a recipient of a Burroughs Wellcome Career Award in the Biomedical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Bernards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peeper, D., Shvarts, A., Brummelkamp, T. et al. A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence. Nat Cell Biol 4, 148–153 (2002). https://doi.org/10.1038/ncb742

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb742

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing