Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi

Abstract

In Huntington disease, polyglutamine expansion of the protein huntingtin (Htt) leads to selective neurodegenerative loss of medium spiny neurons throughout the striatum by an unknown apoptotic mechanism. Binding of Hip-1, a protein normally associated with Htt, is reduced by polyglutamine expansion. Free Hip-1 binds to a hitherto unknown polypeptide, Hippi (Hip-1 protein interactor), which has partial sequence homology to Hip-1 and similar tissue and subcellular distribution. The availability of free Hip-1 is modulated by polyglutamine length within Htt, with disease-associated polyglutamine expansion favouring the formation of pro-apoptotic Hippi–Hip-1 heterodimers. This heterodimer can recruit procaspase-8 into a complex of Hippi, Hip-1 and procaspase-8, and launch apoptosis through components of the 'extrinsic' cell-death pathway. We propose that Htt polyglutamine expansion liberates Hip-1 so that it can form a caspase-8 recruitment complex with Hippi. This novel non-receptor-mediated pathway for activating caspase-8 might contribute to neuronal death in Huntington disease.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Organization of Hippi and Hip-1.
Figure 2: Distribution of Hippi mRNA and Hip-1 and Hippi protein in brain and other tissues.
Figure 3: Expression of Hippi in mouse brain.
Figure 4: Subcellular colocalization of endogenous Hip-1 and Hippi in human neuronal NT2 cells.
Figure 5: Structural requirements for interaction of Hip-1 and Hippi.
Figure 6: Interaction of Hippi and Hip-1 in cells.
Figure 7: The length of the Htt polyglutamine stretch governs the availability of Hip-1 to bind to Hippi.
Figure 8: Hippi increases Hip-1-mediated toxicity in cells.
Figure 9: Hip-1 and Hippi associate with caspase-8 and are dependent on it to mediate cellular toxicity.
Figure 10: Proposed model for Hippi/Hip-1 mediated apoptosis.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

  2. Kremer, B. et al. A worldwide study of the Huntington's disease mutation. The sensitivity and specificity of measuring CAG repeats. N. Engl. J. Med. 330, 1401–1406 (1994).

    CAS  Article  Google Scholar 

  3. Dragunow, M. et al. In situ evidence for DNA fragmentation in Huntington's disease striatum and Alzheimer's disease temporal lobes. Neuroreport 6, 1053–1057 (1995).

    CAS  Article  Google Scholar 

  4. Thomas, L. B. et al. DNA end labeling (TUNEL) in Huntington's disease and other neuropathological conditions. Exp. Neurol. 133, 265–272 (1995).

    CAS  Article  Google Scholar 

  5. Portera-Cailliau, C., Hedreen, J. C., Price, D. L. & Koliatsos, V. E. Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci. 15, 3775–3787 (1995).

    CAS  Article  Google Scholar 

  6. Nihei, K. & Kowall, N. W. Neurofilament and neural cell adhesion molecule immunocytochemistry of Huntington's disease striatum. Ann. Neurol. 31, 59–63 (1992).

    CAS  Article  Google Scholar 

  7. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    CAS  Article  Google Scholar 

  8. Wellington, C. L. et al. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273, 9158–9167 (1998).

    CAS  Article  Google Scholar 

  9. Sanchez, I. et al. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22, 623–633 (1999).

    CAS  Article  Google Scholar 

  10. Nicholson, D. W. & Thornberry, N. A. Caspases: killer proteases. Trends Biochem. Sci. 22, 299–306 (1997).

    CAS  Article  Google Scholar 

  11. Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827 (1996).

    CAS  Article  Google Scholar 

  12. Aravind, L., Dixit, V. M. & Koonin, E. V. The domains of death: evolution of the apoptosis machinery. Trends Biochem. Sci. 24, 47–53 (1999).

    CAS  Article  Google Scholar 

  13. Hofmann, K., Bucher, P. & Tschopp, J. The CARD domain: a new apoptotic signalling motif. Trends Biochem. Sci. 22, 155–156 (1997).

    CAS  Article  Google Scholar 

  14. Hackam, A. S. et al. Huntingtin interacting protein 1 induces apoptosis via a novel caspase-dependent death effector domain. J. Biol. Chem. 275, 41299–41308 (2000).

    CAS  Article  Google Scholar 

  15. Holtzman, D. A., Yang, S. & Drubin, D. G. Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae. J. Cell Biol. 122, 635–644 (1993).

    CAS  Article  Google Scholar 

  16. Mulholland, J., Wesp, A., Riezman, H. & Botstein, D. Yeast actin cytoskeleton mutants accumulate a new class of Golgi-derived secretary vesicle. Mol. Biol. Cell 8, 1481–1499 (1997).

    CAS  Article  Google Scholar 

  17. Wesp, A. et al. End4p/Sla2p interacts with actin-associated proteins for endocytosis in Saccharomyces cerevisiae. Mol. Biol. Cell 8, 2291–2306 (1997).

    CAS  Article  Google Scholar 

  18. Raths, S., Rohrer, J., Crausaz, F. & Riezman, H. end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae. J. Cell Biol. 120, 55–65 (1993).

    CAS  Article  Google Scholar 

  19. Metzler, M. et al. HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2. J. Biol. Chem. 276, 39271–39276 (2001).

    CAS  Article  Google Scholar 

  20. Kalchman, M. A. et al. HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nature Genet. 16, 44–53 (1997).

    CAS  Article  Google Scholar 

  21. Sapp, E. et al. Axonal transport of N-terminal huntingtin suggests early pathology of corticostriatal projections in Huntington disease. J. Neuropathol. Exp. Neurol. 58, 165–173 (1999).

    CAS  Article  Google Scholar 

  22. DiFiglia, M. Excitotoxic injury of the neostriatum: a model for Huntington's disease. Trends Neurosci. 13, 286–289 (1990).

    CAS  Article  Google Scholar 

  23. Seki, N. et al. Cloning, expression analysis, and chromosomal localization of HIP1R, an isolog of huntingtin interacting protein (HIP1). J. Hum. Genet. 43, 268–271 (1998).

    CAS  Article  Google Scholar 

  24. Chopra, V. S. et al. HIP12 is a non-proapoptotic member of a gene family including HIP1, an interacting protein with huntingtin. Mamm. Genome 11, 1006–1015 (2000).

    CAS  Article  Google Scholar 

  25. Eberstadt, M. et al. NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature 392, 941–945 (1998).

    CAS  Article  Google Scholar 

  26. Itoh, N. & Nagata, S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J. Biol. Chem. 268, 10932–10937 (1993).

    CAS  PubMed  Google Scholar 

  27. Rees, D. J., Ades, S. E., Singer, S. J. & Hynes, R. O. Sequence and domain structure of talin. Nature 347, 685–689 (1990).

    CAS  Article  Google Scholar 

  28. Sato, N., Funayama, N., Nagafuchi, A., Yonemura, S. & Tsukita, S. A gene family consisting of ezrin, radixin and moesin. Its specific localization at actin filament/plasma membrane association sites. J. Cell Sci. 103, 131–143 (1992).

    CAS  PubMed  Google Scholar 

  29. Tsukita, S. & Yonemura, S. ERM proteins: head-to-tail regulation of actin-plasma membrane interaction. Trends Biochem. Sci. 22, 53–58 (1997).

    CAS  Article  Google Scholar 

  30. Tsukita, S. & Yonemura, S. ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr. Opin. Cell Biol. 9, 70–75 (1997).

    CAS  Article  Google Scholar 

  31. Muguruma, M., Nishimuta, S., Tomisaka, Y., Ito, T. & Matsumura, S. Organization of the functional domains in membrane cytoskeletal protein talin. J. Biochem. 117, 1036–1042 (1995).

    CAS  Article  Google Scholar 

  32. Hemmings, L. et al. Talin contains three actin-binding sites each of which is adjacent to a vinculin-binding site. J. Cell Sci. 109, 2715–2726 (1996).

    CAS  PubMed  Google Scholar 

  33. Roy, S. & Nicholson, D. W. Cross-talk in cell death signaling. J. Exp. Med. 192, F21–F25. (2000).

  34. Dragatsis, I., Levine, M. S. & Zeitlin, S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nature Genet. 26, 300–306 (2000).

    CAS  Article  Google Scholar 

  35. Leavitt, B. R. et al. Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am. J. Hum. Genet. 68, 313–324 (2001).

    CAS  Article  Google Scholar 

  36. Goldberg, Y. P. et al. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genet. 13, 442–449 (1996).

    CAS  Article  Google Scholar 

  37. Nucifora, F. C., Jr et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428 (2001).

    CAS  Article  Google Scholar 

  38. Garcia-Calvo, M. et al. Purification and catalytic properties of human caspase family members. Cell Death Differ. 6, 362–369 (1999).

    CAS  Article  Google Scholar 

  39. Olmsted, J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J. Biol. Chem. 256, 11955–11957 (1981).

    CAS  PubMed  Google Scholar 

  40. Gutekunst, C. A. et al. The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1): comparison with huntingtin in rat and human. J. Neurosci. 18, 7674–7686 (1998).

    CAS  Article  Google Scholar 

  41. Pagano, R. E., Sepanski, M. A. & Martin, O. C. Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. J. Cell Biol. 109, 2067–2079 (1989).

    CAS  Article  Google Scholar 

  42. Pagano, R. E., Martin, O. C., Kang, H. C. & Haugland, R. P. A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J. Cell Biol. 113, 1267–1279 (1991).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank G. Shore for the kind gift of the dominant-negative caspase-8 mutant as well as Y.-Z. Yang for help in the generation of the Hip-1 monoclonal antibody and H. Yi for help with electron microscopy. This work was supported by grants to M.R.H. from the Canadian Institutes of Health Research (CIHR), the Huntington Disease Society of America (HDSA) and the Hereditory Disease Foundation (HDF).

Correspondence and requests for materials should be addressed to D.W.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald W. Nicholson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gervais, F., Singaraja, R., Xanthoudakis, S. et al. Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol 4, 95–105 (2002). https://doi.org/10.1038/ncb735

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb735

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing