Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Yeast formins regulate cell polarity by controlling the assembly of actin cables

Abstract

Formins are conserved Rho-GTPase effectors that communicate Rho-GTPase signals to the cytoskeleton. We found that formins were required for the assembly of one of the three budding yeast actin structures: polarized arrays of actin cables. A dominant-active formin induced the assembly of actin cables. The activation and localization of the formin Bni1p required components of the polarisome complex. These findings potentially define the cellular function of formins in budding yeast and explain their involvement in the generation of cell polarity. A requirement for formins in constructing specific actin structures might be the basis for the diverse activities of formins in development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formins are required for the integrity of actin cables.
Figure 2: The effect of bni1-FH2#1 bnr1Δ on actin cables is rapidly reversible.
Figure 3: Loss of polarized localization of Myo2p and Kar9p in bni1-FH2#1 bnr1Δ cells at 34 °C.
Figure 4: Normal actin patch motility and Las17p/Bee1p localization in the absence of formin function.
Figure 5: Activated Bni1p induces the formation of actin-cable-like structures.
Figure 6: Tropomyosins are required for the cable-like structures induced by Bni1-FΔDp.
Figure 7: Stability of the cable-like structures induced by Bni1-FΔDp.
Figure 8: Distinct functions of polarisome components in the localization and activation of Bni1p.

Similar content being viewed by others

References

  1. Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell 84, 335–344 (1996).

    Article  CAS  Google Scholar 

  2. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  3. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. II. The role of the cortical actin cytoskeleton. J. Cell Sci. 113, 571–585 (2000).

    CAS  PubMed  Google Scholar 

  4. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J. Cell Sci. 113, 365–375 (2000).

    CAS  PubMed  Google Scholar 

  5. Frazier, J. A. & Field, C. M. Actin cytoskeleton: are FH proteins local organizers? Curr. Biol. 7, R414–R417 (1997).

    Article  CAS  Google Scholar 

  6. Mass, R. L., Zeller, R., Woychik, R. P., Vogt, T. F. & Leder, P. Disruption of formin-encoding transcripts in two mutant limb deformity alleles. Nature 346, 853–855 (1990).

    Article  CAS  Google Scholar 

  7. Tanaka, K. Formin family proteins in cytoskeletal control. Biochem. Biophys. Res. Commun. 267, 479–481 (2000).

    Article  CAS  Google Scholar 

  8. Alberts, A. S. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. 276, 2824–2830 (2001).

    Article  CAS  Google Scholar 

  9. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol. 1, 136–143 (1999).

    Article  CAS  Google Scholar 

  10. Nakano, K. et al. Distinct actions and cooperative roles of ROCK and mDia in Rho small G protein-induced reorganization of the actin cytoskeleton in Madin-Darby canine kidney cells. Mol. Biol. Cell 10, 2481–2491 (1999).

    Article  CAS  Google Scholar 

  11. Tominaga, T. et al. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol. Cell 5, 13–25 (2000).

    Article  CAS  Google Scholar 

  12. Ishizaki, T. et al. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nature Cell Biol. 3, 8–14 (2001).

    Article  CAS  Google Scholar 

  13. Kato, T. et al. Localization of a mammalian homolog of diaphanous, mDia1, to the mitotic spindle in HeLa cells. J. Cell Sci. 114, 775–784 (2001).

    CAS  PubMed  Google Scholar 

  14. Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723–729 (2001).

    Article  CAS  Google Scholar 

  15. Chang, F. Movement of a cytokinesis factor cdc12p to the site of cell division. Curr. Biol. 9, 849–852 (1999).

    Article  CAS  Google Scholar 

  16. Kamei, T. et al. Interaction of Bnr1p with a novel Src homology 3 domain-containing Hof1p. Implication in cytokinesis in Saccharomyces cerevisiae. J. Biol. Chem. 273, 28341–28345 (1998).

    Article  CAS  Google Scholar 

  17. Ozaki-Kuroda, K. et al. Dynamic localization and function of Bni1p at the sites of directed growth in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 827–839 (2001).

    Article  CAS  Google Scholar 

  18. Vallen, E. A., Caviston, J. & Bi, E. Roles of Hof1p, Bni1p, Bnr1p, and Myo1p in cytokinesis in Saccharomyces cerevisiae. Mol. Biol. Cell 11, 593–611 (2000).

    Article  CAS  Google Scholar 

  19. Evangelista, M. et al. Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–122 (1997).

    Article  CAS  Google Scholar 

  20. Imamura, H. et al. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J. 16, 2745–2755 (1997).

    Article  CAS  Google Scholar 

  21. Kohno, H. et al. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15, 6060–6068 (1996).

    Article  CAS  Google Scholar 

  22. Fujiwara, T., Tanaka, K., Inoue, E., Kikyo, M. & Takai, Y. Bni1p regulates microtubule-dependent nuclear migration through the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8016–8027 (1999).

    Article  CAS  Google Scholar 

  23. Lee, L., Klee, S. K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 144, 947–961 (1999).

    Article  CAS  Google Scholar 

  24. Miller, R. K., Matheos, D. & Rose, M. D. The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J. Cell Biol. 144, 963–975 (1999).

    Article  CAS  Google Scholar 

  25. Schuyler, S. C. & Pellman, D. Search, capture and signal: games microtubules and centrosomes play. J. Cell Sci. 114, 247–255 (2001).

    CAS  PubMed  Google Scholar 

  26. Theesfeld, C. L., Irazoqui, J. E., Bloom, K. & Lew, D. J. The role of actin in spindle orientation changes during the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 146, 1019–1032 (1999).

    Article  CAS  Google Scholar 

  27. Miller, R. K. & Rose, M. D. Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J. Cell Biol. 140, 377–390 (1998).

    Article  CAS  Google Scholar 

  28. Korinek, W. S., Copeland, M. J., Chaudhuri, A. & Chant, J. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287, 2257–2259 (2000).

    Article  CAS  Google Scholar 

  29. Lee, L. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287, 2260–2262 (2000).

    Article  CAS  Google Scholar 

  30. Miller, R. K., Cheng, S. C. & Rose, M. D. Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules. Mol. Biol. Cell 11, 2949–2959 (2000).

    Article  CAS  Google Scholar 

  31. Beach, D. L., Thibodeaux, J., Maddox, P., Yeh, E. & Bloom, K. The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr. Biol. 10, 1497–1506 (2000).

    Article  CAS  Google Scholar 

  32. Yin, H., Pruyne, D., Huffaker, T. C. & Bretscher, A. Myosin V orientates the mitotic spindle in yeast. Nature 406, 1013–1015 (2000).

    Article  CAS  Google Scholar 

  33. Sheu, Y. J., Santos, B., Fortin, N., Costigan, C. & Snyder, M. Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol. Cell. Biol. 18, 4053–4069 (1998).

    Article  CAS  Google Scholar 

  34. Pruyne, D. W., Schott, D. H. & Bretscher, A. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J. Cell Biol. 143, 1931–1945 (1998).

    Article  CAS  Google Scholar 

  35. Karpova, T. S., McNally, J. G., Moltz, S. L. & Cooper, J. A. Assembly and function of the actin cytoskeleton of yeast: relationships between cables and patches. J. Cell Biol. 142, 1501–1517 (1998).

    Article  CAS  Google Scholar 

  36. Doyle, T. & Botstein, D. Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc. Natl Acad. Sci. USA 93, 3886–3891 (1996).

    Article  CAS  Google Scholar 

  37. Madania, A. et al. The Saccharomyces cerevisiae homologue of human Wiskott–Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol. Biol. Cell 10, 3521–3538 (1999).

    Article  CAS  Google Scholar 

  38. Winter, D., Lechler, T. & Li, R. Activation of the yeast Arp2/3 complex by Bee1p, a WASP-family protein. Curr. Biol. 9, 501–504 (1999).

    Article  CAS  Google Scholar 

  39. Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399–416 (1997).

    Article  CAS  Google Scholar 

  40. Fujiwara, T. et al. Rho1p–Bni1p–Spa2p interactions: implication in localization of Bni1p at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 1221–1233 (1998).

    Article  CAS  Google Scholar 

  41. Amberg, D. C., Zahner, J. E., Mulholland, J. W., Pringle, J. R. & Botstein, D. Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites. Mol. Biol. Cell 8, 729–753 (1997).

    Article  CAS  Google Scholar 

  42. Zahner, J. E., Harkins, H. A. & Pringle, J. R. Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 1857–1870 (1996).

    Article  CAS  Google Scholar 

  43. Machesky, L. M. & Hall, A. Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J. Cell Biol. 138, 913–926 (1997).

    Article  CAS  Google Scholar 

  44. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404, 151–158 (2000).

    Article  CAS  Google Scholar 

  45. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  46. Winter, D., Podtelejnikov, A. V., Mann, M. & Li, R. The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr. Biol. 7, 519–529 (1997).

    Article  CAS  Google Scholar 

  47. Winter, D. C., Choe, E. Y. & Li, R. Genetic dissection of the budding yeast Arp2/3 complex: a comparison of the in vivo and structural roles of individual subunits. Proc. Natl Acad. Sci. USA 96, 7288–7293 (1999).

    Article  CAS  Google Scholar 

  48. Lynch, E. D. et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278, 1315–1318 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. C. Amberg, D. Botstein, A. Bretscher, T. Lechler, R. Li, K. Ozaki-Kuroda, D. Pruyne, Y. Takai and B. Winsor for strains and/or reagents; J. D. Cande, B. Goode, M. E. McLaughlin, A. Rodal, S. C. Schuyler, R. Segal and B. Sheeman for reading the manuscript; B. Goode, A. Rodal and members of the Pellman laboratory for discussions; J. Liu and S. Randall for assistance and advice on microscopy; and F. Chang and C. Boone for communicating unpublished results. D.P. was supported by NIH GM61345 and a Scholar Award from the Leukemia and Lymphoma Society of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pellman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagot, I., Klee, S. & Pellman, D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol 4, 42–50 (2002). https://doi.org/10.1038/ncb719

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb719

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing