Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair

Abstract

Induction of apoptosis of keratinocytes by ultraviolet (UV) radiation is a protective phenomenon relevant in limiting the survival of cells with irreparable DNA damage. Changes in UV-induced apoptosis may therefore have significant impact on photocarcinogenesis. We have found that the immunomodulatory cytokine IL-12 suppresses UV-mediated apoptosis of keratinocytes both in vitro and in vivo. IL-12 caused a remarkable reduction in UV-specific DNA lesions which was due to induction of DNA repair. In accordance with this, IL-12 induced the expression of particular components of the nucleotide-excision repair complex. Our results show that cytokines can protect cells from apoptosis induced by DNA-damaging UV radiation by inducing DNA repair, and that nucleotide-excision repair can be manipulated by cytokines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-12 inhibits UVB-induced apoptosis.
Figure 2: IL-12 reduces UVB-induced DNA damage.
Figure 3: IL-12 reduces UVB-induced DNA damage in vivo.
Figure 4: In vivo reduction of SCs by IL-12.
Figure 5: Increased number of SCs in IL-12 knockout mice.
Figure 6: IL-12 enhances comet length in UV-exposed cells.
Figure 7: IL-12 does not reduce the number of SCs in Xpa knockout mice.
Figure 8: IL-12 does not reduce UVB-induced DNA damage in XP cells.

Similar content being viewed by others

References

  1. Murphy, G., Young, A. R., Wulf, H. C., Kulms, D. & Schwarz T. The molecular determinants of sunburn cell formation. Exp. Dermatol. 10, 155–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Ziegler, A. et al. Sunburn and p53 in the onset of skin cancer. Nature 372, 773–776 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Kulms, D. et al. Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation. Proc. Natl Acad. Sci. USA 96, 7974–7979 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stege, H. et al. Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. Proc. Natl Acad. Sci. USA 97, 1790–1795 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aragane, Y. et al. Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J. Cell. Biol. 140, 171–182 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rehemtulla, A., Hamilton, C. A., Chinnaiyan, A. M. & Dixit, V. M. Ultraviolet radiation-induced apoptosis is mediated by activation of CD-95 (Fas/APO-1). J. Biol. Chem. 272, 25783–25786 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Sheikh, M. S., Antinore, M. J., Huang, Y. & Fornace, A. J. Jr. Ultraviolet-irradiation-induced apoptosis is mediated via ligand independent activation of tumour necrosis factor receptor 1. Oncogene 17, 2555–2563 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Schwarz, A. et al. UVB induced apoptosis of keratinocytes. Evidence for partial involvement of tumour necrosis factor α in the formation of sunburn cells. J. Invest. Dermatol. 104, 922–927 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Hill, L. L. et al. Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science 285, 898–900 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Leverkus, M., Yaar, M. & Gilchrest, B. A. Fas/Fas ligand interaction contributes to UV-induced apoptosis in human keratinocytes. Exp. Cell. Res. 232, 255–262 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Gloster, H. M. & Brodland, D. G. The epidemiology of skin cancer. Dermatol. Surg. 22, 217–226 (1996).

    PubMed  Google Scholar 

  12. Kothny-Wilkes et al. Interleukin-1 protects transformed keratinocytes from TRAIL-induced apoptosis. J. Biol. Chem. 273, 29247–29253 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Kothny-Wilkes, G., Kulms, D., Luger, T. A., Kubin, M. & Schwarz, T. Interleukin-1 protects transformed keratinocytes from tumour necrosis factor-related apoptosis-inducing ligand- and CD95-induced apoptosis but not from ultraviolet radiation-induced apoptosis. J. Biol. Chem. 274, 28916–28921 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Luger, T. A. & Schwarz, T. Effects of UV-light on cytokines and neuroendocrine hormones. In Photoimmunology (eds Elmets, C. & Krutmann, J.) 55–76 (1995).

    Google Scholar 

  15. Patrick, M. H. Studies on thymine-derived UV photoproducts in DNA I. Formation and biological role of pyrimidine adducts in DNA. Photochem. Photobiol. 25, 357–372 (1977).

    Article  CAS  PubMed  Google Scholar 

  16. Aragane, Y. et al. IL-12 is expressed and released by human keratinocytes and epidermoid carcinoma cell lines. J. Immunol. 153, 5366–5372 (1994).

    CAS  PubMed  Google Scholar 

  17. Koch, F. et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med. 184, 741–746 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Magram, J. et al. IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity 4, 471–481 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. de Laat, W. L., Jaspers, N. G. & Hoeijmakers, J. H. Molecular mechanism of nucleotide excision repair. Genes Dev. 13, 768–785 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Rünger, T. M., Möller, K., Jung, T. & Dekant, B. DNA damage formation, DNA repair, and survival after exposure of DNA repair-proficient and nucleotide excision repair-deficient human lymphoblasts to UVA1 and UVB. Int. J. Radiat. Biol. 76, 789–797 (2000).

    Article  PubMed  Google Scholar 

  21. Fairbairn, D. W., Olive, P. L. & O' Neill, K. L. The comet assay: a comprehensive review. Mutat. Res. 339; 37–59 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Arlett, C. F. et al. Hypersensitivity of human lymphocytes to UV-B and solar irradiation. Cancer Res. 53, 609–614 (1993).

    CAS  PubMed  Google Scholar 

  23. Green, M. H. et al. UV-C sensitivity of unstimulated and stimulated human lymphocytes from normal and xeroderma pigmentosum donors in the comet assay: a potential diagnostic technique. Mutat. Res. 273, 137–144 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. de Vries, A. et al. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377, 169–173 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. van Oosten, M. et al. Differential role of transcription-coupled repair in UVB-induced G2 arrest and apoptosis in mouse epidermis. Proc. Natl Acad. Sci. USA 97, 11268–11273 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kraemer, K. H., Lee, M. M., Andrews, A. D. & Lambert, W. C. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch. Dermatol. 130, 1018–1021 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Simon, M. M. et al. Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. J. Clin. Invest. 95, 926–933 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duckett, C. S. et al. Human IAP-like protein regulates programmed cell death downstream of bcl-xL and cytochrome c. Mol. Cell. Biol. 18, 608–615 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wright, S. C., Wang, H., Wei, Q. S., Kinder, D. H. & Larrick, J. W. Bcl-2-mediated resistance to apoptosis is associated with glutathione-induced inhibition of AP24 activation of nuclear DNA fragmentation. Cancer Res. 58, 5570–5576 (1998).

    CAS  PubMed  Google Scholar 

  30. O'Donovan, A., Davies, A. A., Moggs, J. G., West, S. C. & Wood, R. D. XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. Nature. 371, 432–435 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Mu, D., Hsu, D. S. & Sancar, A. Reaction mechanism of human DNA repair excision nuclease. J. Biol. Chem. 271, 8285–8294 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. de Laat, W. L., Jaspers, N. G. & Hoeijmakers, J. H. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev. 13, 768–785 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Kenny, M. K., Schlegel, U., Furneaux, H. & Hurwitz, J. The role of human single-stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. J. Biol. Chem. 265, 7693–700 (1990).

    CAS  PubMed  Google Scholar 

  34. Zernik-Kobak, M., Vasunia, K., Connelly, M., Anderson, C. W. & Dixon, K. Sites of UV-induced phosphorylation of the p34 subunit of replication protein A from HeLa cells. J. Biol. Chem. 272, 23896–23904 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Hwang, B. J. & Chu, G. Purification and characterization of a human protein that binds to damaged DNA. Biochemistry 32, 1657–1666 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Hwang, B. J., Ford, J. M., Hanawalt, P. C. & Chu, G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc. Natl Acad. Sci. USA 96, 424–428 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Yarosh, D. et al. Localization of liposomes containing a DNA repair enzyme in murine skin. J. Invest. Dermatol. 103, 461–468 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Yarosh, D. et al. Pyrimidine dimer removal enhanced by DNA repair liposomes reduces the incidence of UV skin cancer in mice. Cancer Res. 52, 4227–4231 (1992).

    CAS  PubMed  Google Scholar 

  40. Wolf, P., Cox, P., Yarosh, D. B. & Kripke, M. L. Sunscreens and T4N5 liposomes differ in their ability to protect against ultraviolet-induced sunburn cell formation, alterations of dendritic epidermal cells, and local suppression of contact hypersensitivity. J. Invest. Dermatol. 104, 287–292 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Eller, M. S., Maeda, T., Magnoni, C., Atwal, D. & Gilchrest, B. A. Enhancement of DNA repair in human skin cells by thymidine dinucleotides: evidence for a p53-mediated mammalian SOS response. Proc. Natl Acad. Sci. USA 94, 12627–12632. (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lehman, T. A. et al. p53 mutations in human immortalized epithelial cell lines. Carcinogenesis 14, 833–839 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Trinchieri, G. Interleukin-12 and its role in the generation of Th1 cells. Immunol. Today 14, 335–338 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Schwarz, A. et al. Interleukin-12 prevents UVB-induced local immunosuppression and overcomes UVB-induced tolerance. J. Invest. Dermatol. 106, 1187–1191 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Rivas, J. M. & Ullrich, S. E. Systemic suppression of DTH by supernatants from UV-irradiated keratinocytes: an essential role for IL-10. J. Immunol. 148, 3133–3139 (1992).

    Google Scholar 

  46. Nishigori, C. et al. Evidence that DNA damage triggers interleukin 10 cytokine production in UV-irradiated murine keratinocytes. Proc. Natl Acad. Sci. USA 93, 10354–10359 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmitt, D. A., Walterscheid, J. P. & Ullrich, S. E. Reversal of ultraviolet radiation-induced immune suppression by recombinant interleukin-12: suppression of cytokine production. Immunology 101, 90–96 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Förster and M. Röcken for help in obtaining IL-12/p40 knockout mice, B. Pöppelmann and I. Wolff for excellent technical assistance, H. Riemann for help with phosphorimager analysis and O. Micke for assistance in carrying out γ-irradiation. This work was supported by grants from the German Research Foundation (Schw 625/1–3), the Interdisciplincary Center for Clinical Research (IZKF, E10) and the Federal Ministery of Education and Research (07UVB63A/5) to T.S. M.B. is supported by the German Research Foundation (Emmy Noether-Programm BE 2005/2–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schwarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, A., Ständer, S., Berneburg, M. et al. Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Nat Cell Biol 4, 26–31 (2002). https://doi.org/10.1038/ncb717

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb717

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing