Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2

Abstract

Transcriptional activity of p53, a central regulatory switch in a network controlling cell proliferation and apoptosis, is modulated by protein stability and post-translational modifications including phosphorylation and acetylation. Here we demonstrate that the human serine/threonine kinase homeodomain-interacting protein kinase-2 (HIPK2) colocalizes and interacts with p53 and CREB-binding protein (CBP) within promyelocytic leukaemia (PML) nuclear bodies. HIPK2 is activated by ultraviolet (UV) radiation and selectively phosphorylates p53 at Ser 46, thus facilitating the CBP-mediated acetylation of p53 at Lys 382, and promoting p53-dependent gene expression. Accordingly, the kinase function of HIPK2 mediates the increased expression of p53 target genes, which results in growth arrest and the enhancement of UV-induced apoptosis. Interference with HIPK2 expression by antisense oligonucleotides impairs UV-induced apoptosis. Our results imply that HIPK2 is a novel regulator of p53 effector functions involved in cell growth, proliferation and apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PML3 recruits HIPK2 to PML-NBs.
Figure 2: Colocalization of HIPK2 with p53, CBP and PML in PML-NBs.
Figure 3: HIPK2 interacts with p53 in vitro and in vivo.
Figure 4: HIPK2 activates p53-dependent promoters.
Figure 5: HIPK2 is activated by UV irradiation and phosphorylates Ser 46 of p53.
Figure 6: Physical and functional interactions between HIPK2 and CBP.
Figure 7: Kinase-dependent cell proliferation block by HIPK2 expression.
Figure 8: HIPK2 participates in UV-mediated apoptosis.

Similar content being viewed by others

References

  1. Momand, J., Zambetti, G. P., Olson, D. C., George, D. & Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237–1245 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Oliner, J. D. et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362, 857–860 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Oren, M. Regulation of the p53 tumor suppressor protein. J. Biol. Chem. 274, 36031–36034 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Yu, J. et al. Identification and classification of p53-regulated genes. Proc. Natl Acad. Sci. USA 96, 14517–14522 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao, R. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14, 981–993 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ashcroft, M., Taya, Y. & Vousden, K. H. Stress signals utilize multiple pathways to stabilize p53. Mol. Cell. Biol. 20, 3224–3233 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Unger, T. et al. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J. 18, 1805–1814 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fuchs, S. Y., Fried, V. A. & Ronai, Z. Stress-activated kinases regulate protein stability. Oncogene 17, 1483–1490 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Appella, E. & Anderson, C. W. Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. 268, 2764–2772 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2 Science 287, 1824–1827 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lakin, N. D., Hann, B. C. & Jackson, S. P. The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene 18, 3989–3995 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Burma, S. et al. DNA-dependent protein kinase-independent activation of p53 in response to DNA damage. J. Biol. Chem. 274, 17139–17143 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Nakagawa, K., Taya, Y., Tamai, K. & Yamaizumi, M. Requirement of ATM in phosphorylation of the human p53 protein at serine 15 following DNA double-strand breaks. Mol. Cell. Biol. 19, 2828–2834 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Stanchina, E. et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12, 2434–2442 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bulavin, D. V. et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 18, 6845–6854 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, L. et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol. 19, 1202–1209 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ito, A. et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO. J. 20, 1331–1340 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Sakaguchi et al. DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes Dev. 12, 2831–2841 (1998).

  25. Luo, J., Su, F., Chen, D., Shiloh, A. & Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377–381 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Ferbeyre, G. et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fogal, V. et al. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J. 19, 6185–6195 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo, A. et al. The function of PML in p53-dependent apoptosis. Nature Cell Biol. 10, 730–736 (2000).

    Article  Google Scholar 

  29. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Hofmann, T. G., Mincheva, A., Lichter, P., Dröge, W. & Schmitz, M. L. Human homeodomain-interacting protein kinase-2 (HIPK2) is a member of the DYRK family of protein kinases and maps to chromosome 7q32–q34. Biochimie 82, 1123–1127 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, Y. H., Choi, C. Y., Lee, S. J., Conti, M. A. & Kim, Y. Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J. Biol. Chem. 273, 25875–25879 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Trost, M., Kochs, G. & Haller, O. Characterization of a novel serine/threonine kinase associated with nuclear bodies. J. Biol. Chem. 275, 7373–7377 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. LaMorte, V. J., Dyck, J. A., Ochs, R. L. & Evans, R. M. Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body. Proc. Natl Acad. Sci. USA 95, 4991–4996 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Doucas, V., Tini, M., Egan, D. A. & Evans, R. M. Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc. Natl Acad. Sci. USA 96, 2627–2632 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Gottifredi, V. & Prives, C. P53 and PML: new partners in tumor suppression. Trends Cell Biol. 11, 184–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Maul, G. G., Negorev, D., Bell, P. & Ishov, A. M. Properties and assembly mechanisms of ND10, PML bodies, or PODs. J. Struct. Biol. 129, 278–287 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Boisvert, F.M., Kruhlak, M. J., Box, A. K., Hendzel, M. J. & Bazett-Jones, D. P. The transcription coactivator CBP is a dynamic component of the promyelocytic leukemia nuclear body. J. Cell Biol. 152, 1099–1106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boisvert, F. M., Hendzel, M. J. & Bazett-Jones, D. P. Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J. Cell Biol. 148, 283–292 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kögel, D., Plottner, O., Landsberg, G., Christian, S. & Scheidtmann, K. H. Cloning and characterization of Dlk, a novel serine/threonine kinase that is tightly associated with chromatin and phosphorylates core histones. Oncogene 17, 2645–2654 (1998).

    Article  PubMed  Google Scholar 

  41. Sanchez-Prieto, R., Rojas, J. M., Taya, Y. & Gutkind, J. S. A role for the p38 mitogen-activated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer Res. 60, 2464–2472 (2000).

    CAS  PubMed  Google Scholar 

  42. Higashimoto, Y. et al. Human p53 is phosphorylated on serines 6 and 9 in response to DNA damage-inducing agents. J. Biol. Chem. 275, 23199–23203 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Bean, L.-J. & Stark, G.-R. Phosphorylation of serines 15 and 37 is necessary for efficient accumulation of p53 following irradiation with UV. Oncogene 20, 1076–1084 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Sternsdorf, T. et al. PIC-1/SUMO-1-modified PML-retinoic acid receptor alpha mediates arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Mol. Cell. Biol. 19, 5170–5178 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kern, S. E. et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256, 827–830 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Delerive, P. et al. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-κB and AP-1. J. Biol. Chem. 274, 32048–32054 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Hehner, S. P. et al. Mixed-lineage kinase 3 delivers CD3/CD28-derived signals into the IκB kinase complex. Mol. Cell. Biol. 20, 2556–2568 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ausubel, F. M. et al. (eds) Short Protocols in Molecular Biology (Greene Publishing Associates, New York, NY, 1992).

    Google Scholar 

Download references

Acknowledgements

We are grateful to S. Soddu for sharing results before publication, E. Appella and L. Florin for helpful comments on the manuscript, T. Hamid and N. Stephan for excellent technical assistance, P. Gutwein for help with microscopy, and all colleagues who generously provided plasmids and reagents: W. Gu, G. Haegeman, M. Oren, B. Vogelstein, G. del Sal, G. Blandino and A. J. Fornace Jr. Our laboratories are supported by grants from the EU (QLK3-CT-2000-00463), Deutsche Krebshilfe, Deutsche Forschungsgemeinschaft (Schm 1417/3-1), Universität Heidelberg and Fonds der chemischen Industrie. The HPI is supported by the Freie und Hansestadt Hamburg and the Bundesministerium für Gesundheit. Correspondence and requests for materials should be addressed to M.L.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lienhard Schmitz.

Supplementary information

Supplementary figures

Figure S1 HIPK2-mediated phosphorylation of p53. (PDF 175 kb)

Figure S2 UV-radiation does not alter endogenous HIPK2 levels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, T., Möller, A., Sirma, H. et al. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4, 1–10 (2002). https://doi.org/10.1038/ncb715

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb715

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing