Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome

An Erratum to this article was published on 31 October 2017

This article has been updated

Abstract

Ciliopathies, including nephronophthisis (NPHP), Meckel syndrome (MKS) and Joubert syndrome (JBTS), can be caused by mutations affecting components of the transition zone, a domain near the base of the cilium that controls the protein composition of its membrane. We defined the three-dimensional arrangement of key proteins in the transition zone using two-colour stochastic optical reconstruction microscopy (STORM). NPHP and MKS complex components form nested rings comprised of nine-fold doublets. JBTS-associated mutations in RPGRIP1L or TCTN2 displace certain transition-zone proteins. Diverse ciliary proteins accumulate at the transition zone in wild-type cells, suggesting that the transition zone is a waypoint for proteins entering and exiting the cilium. JBTS-associated mutations in RPGRIP1L disrupt SMO accumulation at the transition zone and the ciliary localization of SMO. We propose that the disruption of transition-zone architecture in JBTS leads to a failure of SMO to accumulate at the transition zone and cilium, disrupting developmental signalling in JBTS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MKS and NPHP complexes form rings of discrete puncta.
Figure 2: MKS and NPHP complex rings are comprised of doublets.
Figure 3: MKS and NPHP complexes occupy the same proximodistal position in the transition zone, where SMO docks following Hedgehog pathway activation.
Figure 4: MKS and NPHP complexes are displaced from the transition zone in a Joubert syndrome patient with mutations in TCTN2.
Figure 5: MKS and NPHP complexes are displaced from the transition zone in Joubert syndrome patients with mutations in RPGRIP1L.
Figure 6: Transition-zone rings formed by MKS and NPHP complexes are disrupted in a Joubert syndrome patient with mutations in RPGRIP1L.

Similar content being viewed by others

Change history

  • 25 September 2017

    In the original version of this Article, the name of author Galo Garcia III was coded wrongly, resulting in it being incorrect when exported to citation databases. This has now been corrected, though no visible changes will be apparent.

References

  1. Dutcher, S. K. The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 71, 79–94 (2014).

    Article  Google Scholar 

  2. Pearson, C. G. & Winey, M. Basal body assembly in ciliates: the power of numbers. Traffic 10, 461–471 (2009).

    Article  CAS  Google Scholar 

  3. Garcia, G. & Reiter, J. F. A primer on the mouse basal body. Cilia 5, 17 (2016).

    Article  Google Scholar 

  4. Vertii, A., Hung, H.-F., Hehnly, H. & Doxsey, S. Human basal body basics. Cilia 5, 13 (2016).

    Article  Google Scholar 

  5. Anderson, R. G. The three-dimensional structure of the basal body from the rhesus monkey oviduct. J. Cell Biol. 54, 246–265 (1972).

    Article  CAS  Google Scholar 

  6. Gilula, N. B. & Satir, P. The ciliary necklace. A ciliary membrane specialization. J. Cell Biol. 53, 494–509 (1972).

    Article  CAS  Google Scholar 

  7. Habbig, S. & Liebau, M. C. Ciliopathies—from rare inherited cystic kidney diseases to basic cellular function. Mol. Cell. Pediatr. 2, 8 (2015).

    Article  Google Scholar 

  8. Szymanska, K., Hartill, V. L. & Johnson, C. A. Unraveling the genetics of Joubert and Meckel-Gruber syndromes. J. Pediatr. Genet. 3, 65–78 (2014).

    Article  CAS  Google Scholar 

  9. Otto, E. et al. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am. J. Hum. Genet. 71, 1161–1167 (2002).

    Article  CAS  Google Scholar 

  10. Wolf, M. T. F. et al. Mutational analysis of the RPGRIP1L gene in patients with Joubert syndrome and nephronophthisis. Kidney Int. 72, 1520–1526 (2007).

    Article  CAS  Google Scholar 

  11. Srour, M. et al. Mutations in TMEM231 cause Joubert syndrome in French Canadians. J. Med. Genet. 49, 636–641 (2012).

    Article  CAS  Google Scholar 

  12. Arts, H. H. et al. Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat. Genet. 39, 882–888 (2007).

    Article  CAS  Google Scholar 

  13. Hopp, K. et al. B9D1 is revealed as a novel Meckel syndrome (MKS) gene by targeted exon-enriched next-generation sequencing and deletion analysis. Hum. Mol. Genet. 20, 2524–2534 (2011).

    Article  CAS  Google Scholar 

  14. Garcia-Gonzalo, F. R. et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43, 776–784 (2011).

    Article  CAS  Google Scholar 

  15. Dowdle, W. E. et al. Disruption of a ciliary B9 protein complex causes Meckel syndrome. Am. J. Hum. Genet. 89, 94–110 (2011).

    Article  CAS  Google Scholar 

  16. Roberson, E. C. et al. TMEM231, mutated in orofaciodigital and Meckel syndromes, organizes the ciliary transition zone. J. Cell Biol. 209, 129–142 (2015).

    Article  CAS  Google Scholar 

  17. Delous, M. et al. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat. Genet. 39, 875–881 (2007).

    Article  CAS  Google Scholar 

  18. Joubert, M., Eisenring, J. J., Robb, J. P. & Andermann, F. Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology 19, 813–825 (1969).

    Article  CAS  Google Scholar 

  19. Sang, L. et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145, 513–528 (2011).

    Article  CAS  Google Scholar 

  20. Chih, B. et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell Biol. 14, 61–72 (2012).

    Article  CAS  Google Scholar 

  21. Jensen, V. L. et al. Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J. 34, 2537–2556 (2015).

    Article  CAS  Google Scholar 

  22. Williams, C. L. et al. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192, 1023–1041 (2011).

    Article  CAS  Google Scholar 

  23. Reiter, J. F., Blacque, O. E. & Leroux, M. R. The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 13, 608–618 (2012).

    Article  CAS  Google Scholar 

  24. Awata, J. et al. NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J. Cell Sci. 127, 4714–4727 (2014).

    Article  Google Scholar 

  25. Craige, B. et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190, 927–940 (2010).

    Article  CAS  Google Scholar 

  26. Garcia-Gonzalo, F. R. & Reiter, J. F. Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J. Cell Biol. 197, 697–709 (2012).

    Article  CAS  Google Scholar 

  27. Mennella, V. et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14, 1159–1168 (2012).

    Article  CAS  Google Scholar 

  28. Lau, L., Lee, Y. L., Sahl, S. J., Stearns, T. & Moerner, W. E. STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophys. J. 102, 2926–2935 (2012).

    Article  CAS  Google Scholar 

  29. Yang, T. T. et al. Superresolution pattern recognition reveals the architectural map of the ciliary transition zone. Sci. Rep. 5, 14096 (2015).

    Article  CAS  Google Scholar 

  30. Lawo, S., Hasegan, M., Gupta, G. D. & Pelletier, L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14, 1148–1158 (2012).

    Article  CAS  Google Scholar 

  31. Bates, M., Huang, B., Dempsey, G. T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).

    Article  CAS  Google Scholar 

  32. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  Google Scholar 

  33. Alcedo, J., Ayzenzon, M., Von Ohlen, T., Noll, M. & Hooper, J. E. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86, 221–232 (1996).

    Article  CAS  Google Scholar 

  34. Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    Article  CAS  Google Scholar 

  35. Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  Google Scholar 

  36. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996).

    Article  CAS  Google Scholar 

  37. Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  Google Scholar 

  38. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  Google Scholar 

  39. Raffel, C. et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 57, 842–845 (1997).

    CAS  PubMed  Google Scholar 

  40. Milenkovic, L. et al. Single-molecule imaging of Hedgehog pathway protein Smoothened in primary cilia reveals binding events regulated by Patched1. Proc. Natl Acad. Sci. USA 112, 8320–8325 (2015).

    Article  CAS  Google Scholar 

  41. Chen, J. K., Taipale, J., Young, K. E., Maiti, T. & Beachy, P. A. Small molecule modulation of Smoothened activity. Proc. Natl Acad. Sci. USA 99, 14071–14076 (2002).

    Article  CAS  Google Scholar 

  42. Ou, Y. et al. Adenylate cyclase regulates elongation of mammalian primary cilia. Exp. Cell Res. 315, 2802–2817 (2009).

    Article  CAS  Google Scholar 

  43. Bishop, G. A., Berbari, N. F., Lewis, J. & Mykytyn, K. Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J. Comp. Neurol. 505, 562–571 (2007).

    Article  Google Scholar 

  44. Wong, S. T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000).

    Article  CAS  Google Scholar 

  45. Livera, G. et al. Inactivation of the mouse adenylyl cyclase 3 gene disrupts male fertility and spermatozoon function. Mol. Endocrinol. 19, 1277–1290 (2005).

    Article  CAS  Google Scholar 

  46. Wang, Z. et al. Adult type 3 adenylyl cyclase-deficient mice are obese. PLoS ONE 4, e6979 (2009).

    Article  Google Scholar 

  47. Deane, J. A., Cole, D. G., Seeley, E. S., Diener, D. R. & Rosenbaum, J. L. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11, 1586–1590 (2001).

    Article  CAS  Google Scholar 

  48. Stratigopoulos, G. et al. Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab. 19, 767–779 (2014).

    Article  CAS  Google Scholar 

  49. Parisi, M. A. et al. The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. Am. J. Hum. Genet. 75, 82–91 (2004).

    Article  CAS  Google Scholar 

  50. Cantagrel, V. et al. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am. J. Hum. Genet. 83, 170–179 (2008).

    Article  CAS  Google Scholar 

  51. Dixon-Salazar, T. et al. Mutations in the AHI1 gene, encoding jouberin, cause Joubert syndrome with cortical polymicrogyria. Am. J. Hum. Genet. 75, 979–987 (2004).

    Article  CAS  Google Scholar 

  52. Ferland, R. J. et al. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat. Genet. 36, 1008–1013 (2004).

    Article  CAS  Google Scholar 

  53. Vierkotten, J., Dildrop, R., Peters, T., Wang, B. & Rüther, U. Ftm is a novel basal body protein of cilia involved in Shh signalling. Development 134, 2569–2577 (2007).

    Article  CAS  Google Scholar 

  54. Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010).

    Article  CAS  Google Scholar 

  55. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010).

    Article  CAS  Google Scholar 

  56. Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2013).

    Article  CAS  Google Scholar 

  57. Yee, L. E. et al. Conserved genetic interactions between ciliopathy complexes cooperatively support ciliogenesis and ciliary signaling. PLoS Genet. 11, e1005627 (2015).

    Article  Google Scholar 

  58. Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344 (2010).

    Article  CAS  Google Scholar 

  59. Dafinger, C. et al. Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics. J. Clin. Invest. 121, 2662–2667 (2011).

    Article  CAS  Google Scholar 

  60. Hynes, A. M. et al. Murine Joubert syndrome reveals Hedgehog signaling defects as a potential therapeutic target for nephronophthisis. Proc. Natl Acad. Sci. USA 111, 9893–9898 (2014).

    Article  CAS  Google Scholar 

  61. You, Y. & Brody, S. L. Culture and differentiation of mouse tracheal epithelial cells. Methods Mol. Biol. 945, 123–143 (2013).

    Article  Google Scholar 

  62. Bossi, M. et al. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett. 8, 2463–2468 (2008).

    Article  CAS  Google Scholar 

  63. Taubin, G. Estimation of planar curves, surfaces, and nonplanar space-curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13, 1115–1138 (1991).

    Article  Google Scholar 

  64. Fienup, J. R., Guizar-Sicairos, M. & Thurman, S. T. Efficient subpixel image registration algorithms. Opt. Lett. 33, 156–158 (2008).

    Article  Google Scholar 

  65. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  Google Scholar 

  66. Pieper, U. et al. ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 42, D336–D346 (2014).

    Article  CAS  Google Scholar 

  67. Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 54, 5.6.1–5.6.37 (2016).

    Google Scholar 

  68. Tsirigos, K. D., Peters, C., Shu, N., Käll, L. & Elofsson, A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 43, W401–W407 (2015).

    Article  CAS  Google Scholar 

  69. Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 43, W389–W394 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Structured illumination microscopy was performed on a Nikon N-SIM system in the UCSF Nikon Imaging Center. We thank H. Liu and J. Schnitzbauer for help setting up the STORM system and J. Schnitzbauer in developing the analysis algorithms. We thank V. Herranz-Pérez and J. M. Garcia-Verdugo for providing electron micrographs. This project is supported by the NIH Director’s New Innovator Award (DP2OD008479) to X.S., R.M. and B.H. and by grants from the NIH (AR054396 and GM095941 to J.F.R., F32GM109714 to G.G.III, and U54HD083091 sub-project 6849 to D.D.) and the Burroughs Wellcome Fund and the Packard Foundation to G.G.III and J.F.R. B.H. is a Chan Zuckerberg Biohub investigator.

Author information

Authors and Affiliations

Authors

Contributions

X.S., G.G.III, B.H. and J.F.R. designed the experiments and wrote the manuscript; X.S. and R.M. built the STORM microscope; G.G.III generated the samples; X.S. and G.G.III performed the STORM imaging experiments; and X.S. analysed the STORM data. G.G.III performed the SIM imaging experiments and analysed the SIM data. J.C.V.D.W. and D.D. collected and genotyped the human fibroblasts and provided feedback on the manuscript. G.J.P. generated the α-NPHP1 antibody.

Corresponding authors

Correspondence to Bo Huang or Jeremy F. Reiter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1

Single color 3D STORM images of SMO in (A) Ptch1−/− and (B) Wild type MEFs. The STORM images are overlaid with conventional wide-field fluorescence images. Scale bars: 500 nm.

Supplementary Figure 2 RPGRIP1L domain architecture and JBTS patient mutations.

RPGRIP1L contains seven coiled-coil segments and 3 C2 domains, including an RPGR-interacting C2 domain (RID). Patient 15-4 carries RPGRIP1L(Thr615Pro); 4-4 and 4-3 carry RPGRIP1L(Ser659Pro). Each JBTS-affected patient also carries a nonsense mutation affecting the C2-N domain or the C2-C domain. Patient 15-4 carries RPGRIP1L(Gln684X); patients 4-4 and 4-3 carry RPGRIP1L(Arg805X).

Supplementary information

Supplementary Information

Supplementary Information (PDF 3705 kb)

Life Sciences Reporting Summary (PDF 68 kb)

Supplementary Table 1

Supplementary Information (XLSX 12 kb)

Supplementary Table 2

Supplementary Information (XLSX 105 kb)

Supplementary Table 3

Supplementary Information (XLSX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Garcia, G., Van De Weghe, J. et al. Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat Cell Biol 19, 1178–1188 (2017). https://doi.org/10.1038/ncb3599

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3599

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing