Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Y chromothripsis?

Micronucleation of missegregated chromatin can lead to substantial chromosome rearrangements via chromothripsis. However, the molecular details of micronucleus-based chromothripsis are still unclear. Now, an elegant system that specifically induces missegregation of the Y chromosome provides insight into this process, including a role for non-homologous end joining.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of chromothripsis after Y centromere inactivation and micronucleation.

References

  1. de Pagter, M. S. & Kloosterman, W. P. in Chromosomal Instability in Cancer Cells Vol. 200 (eds Ghadimi, B. M. & Ried, T.) 165–193 (2015).

    Google Scholar 

  2. Stephens, P. J. et al. Cell 144, 27–40 (2011).

    Article  CAS  Google Scholar 

  3. Rausch, T. et al. Cell 148, 59–71 (2012).

    Article  CAS  Google Scholar 

  4. Crasta, K. et al. Nature 482, 53–58 (2012).

    Article  CAS  Google Scholar 

  5. Zhang, C. Z. et al. Nature 522, 179–184 (2015).

    Article  CAS  Google Scholar 

  6. Ly, P. et al. Nat. Cell. Biol. 19, 68–75 (2017).

    Article  CAS  Google Scholar 

  7. Holland, N. et al. Mutat. Res. 659, 93–108 (2008).

    Article  CAS  Google Scholar 

  8. Kato, H. & Sandberg, A. A. J. Cell Biol. 34, 35–45 (1967).

    Article  CAS  Google Scholar 

  9. Terradas, M., Martin, M., Tusell, L. & Genesca, A. DNA Repair 8, 1225–1234 (2009).

    Article  CAS  Google Scholar 

  10. Xu, B. et al. PloS ONE 6, e18618 (2011).

    Article  CAS  Google Scholar 

  11. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Cell 154, 47–60 (2013).

    Article  CAS  Google Scholar 

  12. Johnson, R. T. & Rao, P. N. Nature 226, 717–722 (1970).

    Article  CAS  Google Scholar 

  13. Skaletsky, H. et al. Nature 423, 825–837 (2003).

    Article  CAS  Google Scholar 

  14. Marshall, O. J., Chueh, A. C., Wong, L. H. & Choo, K. H. A. Am. J. Hum. Genet. 82, 261–282 (2008).

    Article  CAS  Google Scholar 

  15. Santaguida, S. & Amon, A. Nat. Rev. Mol. Cell Biol. 16, 473–485 (2015).

    Article  CAS  Google Scholar 

  16. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Cell 163, 1641–1654 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily M. Hatch.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatch, E. Y chromothripsis?. Nat Cell Biol 19, 12–14 (2017). https://doi.org/10.1038/ncb3458

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3458

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing