Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resolving the cadherin–F-actin connection

Cadherin adhesion complexes have recently emerged as sensors of tissue tension that regulate key developmental processes. Super-resolution microscopy experiments now unravel the spatial organization of the interface between cadherins and the actin cytoskeleton and reveal how vinculin, a central component in cadherin mechanotransduction, is regulated by mechanical and biochemical signals.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanochemical regulation of vinculin within the cadherin/F-actin interface.


  1. Munjal, A. & Lecuit, T. Development 141, 1789–1793 (2014).

    Article  CAS  Google Scholar 

  2. Twiss, F. & de Rooij, J. Cell Mol. Life Sci. 70, 4101–4116 (2013).

    Article  CAS  Google Scholar 

  3. Bertocchi, C. et al. Nat. Cell Biol. 19, 28–37 (2017).

    Article  CAS  Google Scholar 

  4. Han, M. K. L. & de Rooij, J. Trends Cell Biol. 26, 612–623 (2016).

    Article  Google Scholar 

  5. Ladoux, B., Nelson, W. J., Yan, J. & Mège, R. M. Integr. Biol. 7, 1109–1119 (2015).

    Article  CAS  Google Scholar 

  6. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. Nat. Cell Biol. 12, 533–542 (2010).

    Article  CAS  Google Scholar 

  7. Kanchanawong, P. et al. Nature 468, 580–584 (2010).

    Article  CAS  Google Scholar 

  8. Bays, J. L. et al. J. Cell Biol. 205, 251–263 (2014).

    Article  CAS  Google Scholar 

  9. Auernheimer, V. et al. J. Cell Sci. 128, 3435–3443 (2015).

    Article  CAS  Google Scholar 

  10. Atherton, P., Stutchbury, B., Jethwa, D. & Ballestrem, C. Exp. Cell Res. 343, 21–27 (2016).

    Article  CAS  Google Scholar 

  11. Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D. & Waterman, C. M. J. Cell Biol. 188, 877–890 (2010).

    Article  CAS  Google Scholar 

  12. Ladoux, B. et al. Biophys. J. 98, 534–542 (2010).

    Article  CAS  Google Scholar 

  13. Kris, A. S., Kamm, R. D. & Sieminski, A. L. Biochem. Biophys. Res. Commun. 375, 134–138 (2008).

    Article  CAS  Google Scholar 

  14. Leerberg, J. M. et al. Curr. Biol. 24, 1689–1699 (2014).

    Article  CAS  Google Scholar 

  15. Huveneers, S. et al. J. Cell Biol. 196, 641–652 (2012).

    Article  CAS  Google Scholar 

  16. Oldenburg, J. et al. Sci. Rep. 5, 17225 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Johan de Rooij.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., de Rooij, J. Resolving the cadherin–F-actin connection. Nat Cell Biol 19, 14–16 (2017).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing