Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem cells versus plasticity in liver and pancreas regeneration

Subjects

Abstract

Cell replacement in adult organs can be achieved through stem cell differentiation or the replication or transdifferentiation of existing cells. In the adult liver and pancreas, stem cells have been proposed to replace tissue cells, particularly following injury. Here we review how specialized cell types are produced in the adult liver and pancreas. Based on current evidence, we propose that the plasticity of differentiated cells, rather than stem cells, accounts for tissue repair in both organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assays for assessing stem cell properties.
Figure 2: Plasticity and cell interconversion in the liver.
Figure 3: Plasticity and cell interconversion in the pancreas.

Similar content being viewed by others

References

  1. Losick, V. P., Morris, L. X., Fox, D. T. & Spradling, A. Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev. Cell 21, 159–171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Donnelly, D. S., Zelterman, D., Sharkis, S. & Krause, D. S. Functional activity of murine CD34+ and CD34 hematopoietic stem cell populations. Exp. Hematol. 27, 788–796 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Krause, D. S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Pevny, L. & Rao, M. S. The stem-cell menagerie. Trends Neurosci. 26, 351–359 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Kushner, J. A., Weir, G. C. & Bonner-Weir, S. Ductal origin hypothesis of pancreatic regeneration under attack. Cell Metab. 11, 2–3 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Criscimanna, A., Bertera, S., Esni, F., Trucco, M. & Bottino, R. in Type 1 Diabetes Complications (ed. P. D. Wagner) Ch. 17 (InTech, 2011).

    Google Scholar 

  7. Ziv, O., Glaser, B. & Dor, Y. The plastic pancreas. Dev. Cell 26, 3–7 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Grompe, M. Liver stem cells, where art thou? Cell Stem Cell 15, 257–258 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Yanger, K. & Stanger, B. Z. Facultative stem cells in liver and pancreas: fact and fancy. Dev. Dynam. 240, 521–529 (2011).

    Article  Google Scholar 

  10. Duncan, A. W., Dorrell, C. & Grompe, M. Stem cells and liver regeneration. Gastroenterology 137, 466–481 (2009).

    Article  PubMed  Google Scholar 

  11. Winton, D. J., Blount, M. A. & Ponder, B. A. A clonal marker induced by mutation in mouse intestinal epithelium. Nature 333, 463–466 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Van der Flier, L. G. et al. The intestinal Wnt/TCF signature. Gastroenterology 132, 628–632 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Yui, S. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18, 618–623 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Potten, C. S., Gandara, R., Mahida, Y. R., Loeffler, M. & Wright, N. A. The stem cells of small intestinal crypts: where are they? Cell Proliferat. 42, 731–750 (2009).

    Article  CAS  Google Scholar 

  17. Potten, C. S. & Hendry, J. H. Differential regeneration of intestinal proliferative cells and cryptogenic cells after irradiation. Int. J. Radiat. Biol. Re. 27, 413–424 (1975).

    CAS  Google Scholar 

  18. Barker, N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 15, 19–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5+ cells dispensable. Nature 478, 255–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buczacki, S. J. A. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14, 1099–1104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arias, I. M. & Boyer, J. L. The Liver: Biology and Pathobiology 3rd edn (Raven, 1994).

    Google Scholar 

  23. Sell, S. Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology 33, 738–750 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Fausto, N. Liver regeneration. J. Hepatol. 32, 19–31 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Thorgeirsson, S. S. & Grisham, J. W. Overview of recent experimental studies on liver stem cells. Semin. Liver Dis. 23, 303–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Sell, S. & Ilic, Z. Liver Stem Cells (Landes Bioscience, 1997).

    Google Scholar 

  28. Sell, S. Liver stem cells. Mod. Pathol. 7, 105–112 (1994).

    CAS  PubMed  Google Scholar 

  29. Miyajima, A., Tanaka, M. & Itoh, T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14, 561–574 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Theise, N. D. et al. The canals of Hering and hepatic stem cells in humans. Hepatology 30, 1425–1433 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Zobiri, O., Deshayes, N. & Rathman-Josserand, M. Evolution of the clonogenic potential of human epidermal stem/progenitor cells with age. Stem Cells Cloning 5, 1–4 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. Liu, J. M., Buchwald, M., Walsh, C. E. & Young, N. S. Fanconi anemia and novel strategies for therapy. Blood 84, 3995–4007 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Dorrell, C. et al. Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev. 25, 1193–1203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shin, S. et al. Foxl1–Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes Dev. 25, 1185–1192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dorrell, C. et al. The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar. Stem Cell Res. 13, 275–283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tarlow, B. D., Finegold, M. J. & Grompe, M. Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury. Hepatology 60, 278–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Arber, N., Zajicek, G. & Ariel, I. The streaming liver II: hepatocyte life history. Liver 8, 80–87 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Zajicek, G., Oren, R. & Weinreb, M., Jr. The streaming liver. Liver 5, 293–300 (1985).

    Article  CAS  PubMed  Google Scholar 

  42. Ponder, K. P. Analysis of liver development, regeneration, and carcinogenesis by genetic marking studies. FASEB J. 10, 673–682 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Bralet, M. P., Branchereau, S., Brechot, C. & Ferry, N. Cell lineage study in the liver using retroviral mediated gene transfer: evidence against the streaming of hepatocytes in normal liver. Amm J. Pathol. 144, 896–905 (1994).

    CAS  Google Scholar 

  44. Malato, Y. et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J. Clin. Invest. 121, 4850–4860 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, B., Zhao, L., Fish, M., Logan, C. Y. & Nusse, R. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Akhurst, B. et al. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology 34, 519–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Paku, S., Schnur, J., Nagy, P. & Thorgeirsson, S. S. Origin and structural evolution of the early proliferating oval cells in rat liver. Am. J. Pathol. 158, 1313–1323 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Preisegger, K. H. et al. Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease. Lab. Invest. 79, 103–109 (1999).

    CAS  PubMed  Google Scholar 

  49. Roskams, T. & Desmet, V. Ductular reaction and its diagnostic significance. Semin. Diagn. Pathol. 15, 259–269 (1998).

    CAS  PubMed  Google Scholar 

  50. Kiss, A., Schnur, J., Szabo, Z. & Nagy, P. Immunohistochemical analysis of atypical ductular reaction in the human liver, with special emphasis on the presence of growth factors and their receptors. Liver 21, 237–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Bucher, N. L. Experimental aspects of hepatic regeneration. New Engl. J. Med. 277, 738–746 (1967).

    Article  CAS  PubMed  Google Scholar 

  52. Frederiks, W. M., Marx, F., Chamuleau, R. A., van Noorden, C. J. & James, J. Immunocytochemical determination of ploidy class-dependent bromodeoxyuridine incorporation in rat liver parenchymal cells after partial hepatectomy. Histochemistry 93, 627–630 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Sakamoto, T. et al. Mitosis and apoptosis in the liver of interleukin-6-deficient mice after partial hepatectomy. Hepatology 29, 403–411 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Zaret, K. S. & Grompe, M. Generation and regeneration of cells of the liver and pancreas. Science 322, 1490–1494 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carpentier, R. et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 141, 1432–1438 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Kaestner, K. H. The making of the liver: developmental competence in foregut endoderm and induction of the hepatogenic program. Cell Cycle 4, 1146–1148 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Hixson, D. C., Affigne, S., Faris, R. A. & McBride, A. C. Delineation of antigenic pathways of ethionine-induced liver cancer in the rat. Carcinogenesis 18, 1169–1175 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Petersen, B. E., Goff, J. P., Greenberger, J. S. & Michalopoulos, G. K. Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat. Hepatology 27, 433–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Evarts, R. P., Nagy, P., Marsden, E. & Thorgeirsson, S. S. A precursor–product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis 8, 1737–1740 (1987).

    Article  CAS  PubMed  Google Scholar 

  60. Evarts, R. P., Nagy, P., Nakatsukasa, H., Marsden, E. & Thorgeirsson, S. S. In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res. 49, 1541–1547 (1989).

    CAS  PubMed  Google Scholar 

  61. Lazaro, C. A., Rhim, J. A., Yamada, Y. & Fausto, N. Generation of hepatocytes from oval cell precursors in culture. Cancer Res. 58, 5514–5522 (1998).

    CAS  PubMed  Google Scholar 

  62. Wang, X. et al. The origin and liver repopulating capacity of murine oval cells. Proc. Natl Acad. Sci. USA 100, 11881–11888 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Petersen, B. E. et al. Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology 37, 632–640 (2003).

    Article  PubMed  Google Scholar 

  64. Espanol-Suner, R. et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology 143, 1564–1575 (2012).

    Article  PubMed  Google Scholar 

  65. Furuyama, K. et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat. Genet. 43, 34–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Yanger, K. et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15, 340–349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schaub, J. R., Malato, Y., Gormond, C. & Willenbring, H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 8, 933–939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shin, S., Upadhyay, N., Greenbaum, L. E. & Kaestner, K. H. Ablation of Foxl1–Cre-labeled hepatic progenitor cells and their descendants impairs recovery of mice from liver injury. Gastroenterology 148, 192–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Lu, W. Y. et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat. Cell Biol. 17, 971–983 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tarlow, B. D. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15, 605–618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bioulac-Sage, P. & Balabaud, C. Human cirrhosis: monoclonal regenerative nodules derived from hepatic progenitor cells abutting ductular reaction. Gastroen. Clin. Biol. 34, 267–269 (2010).

    Article  CAS  Google Scholar 

  72. Richardson, M. M. et al. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 133, 80–90 (2007).

    Article  PubMed  Google Scholar 

  73. Clouston, A. D. et al. Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis. Hepatology 41, 809–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Yanger, K. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 27, 719–724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sekiya, S. & Suzuki, A. Hepatocytes, rather than cholangiocytes, can be the major source of primitive ductules in the chronically injured mouse liver. Am. J. Pathol. 184, 1468–1478 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Yimlamai, D. et al. Hippo pathway activity influences liver cell fate. Cell 157, 1324–1338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fan, B. et al. Cholangiocarcinomas can originate from hepatocytes in mice. J. Clin. Invest. 122, 2911–2915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sekiya, S. & Suzuki, A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J. Clin. Invest. 122, 3914–3918 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Font-Burgada, J. et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 162, 766–779 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Githens, S. The pancreatic duct cell: proliferative capabilities, specific characteristics, metaplasia, isolation, and culture. J. Pediat. Gastr. Nutr. 7, 486–506 (1988).

    Article  CAS  Google Scholar 

  81. Sangiorgi, E. & Capecchi, M. R. Bmi1 lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis. Proc. Natl Acad. Sci. USA 106, 7101–7106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Teta, M., Long, S. Y., Wartschow, L. M., Rankin, M. M. & Kushner, J. A. Very slow turnover of β-cells in aged adult mice. Diabetes 54, 2557–2567 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Hayashi, K. Y. et al. Differentiation and proliferation of endocrine cells in the regenerating rat pancreas after 90% pancreatectomy. Arch. Histol. Cytol. 66, 163–174 (2003).

    Article  PubMed  Google Scholar 

  84. Hayashi, K., Takahashi, T., Kakita, A. & Yamashina, S. Regional differences in the cellular proliferation activity of the regenerating rat pancreas after partial pancreatectomy. Arch. Histol. Cytol. 62, 337–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Elsasser, H. P., Adler, G. & Kern, H. F. Time course and cellular source of pancreatic regeneration following acute pancreatitis in the rat. Pancreas 1, 421–429 (1986).

    Article  CAS  PubMed  Google Scholar 

  86. Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nir, T., Melton, D. A. & Dor, Y. Recovery from diabetes in mice by β-cell regeneration. J. Clin. Invest. 117, 2553–2561 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Menge, B. A. et al. Long-term recovery of β-cell function after partial pancreatectomy in humans. Metabolism 61, 620–624 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Menge, B. A. et al. Partial pancreatectomy in adult humans does not provoke β-cell regeneration. Diabetes 57, 142–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Phillip, V. et al. Volumetric gain of the human pancreas after left partial pancreatic resection: a CT-scan based retrospective study. Pancreatology 15, 542–547 (2015).

    Article  PubMed  Google Scholar 

  91. Bonner-Weir, S., Trent, D. F. & Weir, G. C. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J. Clin. Invest. 71, 1544–1553 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brockenbrough, J. S., Weir, G. C. & Bonner-Weir, S. Discordance of exocrine and endocrine growth after 90% pancreatectomy in rats. Diabetes 37, 232–236 (1988).

    Article  CAS  PubMed  Google Scholar 

  93. Bouwens, L. & Pipeleers, D. G. Extra-insular beta cells associated with ductules are frequent in adult human pancreas. Diabetologia 41, 629–633 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, T. C. et al. Pancreatic gastrin stimulates islet differentiation of transforming growth factor α-induced ductular precursor cells. J. Clin. Invest. 92, 1349–1356 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, R. N., Klöppel, G. & Bouwens, L. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 38, 1405–1411 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Xu, X. et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Yamamoto, K. et al. Recombinant human β-cellulin promotes the neogenesis of β-cells and ameliorates glucose intolerance in mice with diabetes induced by selective alloxan perfusion. Diabetes 49, 2021–2027 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Tokui, Y. et al. Neogenesis and proliferation of β-cells induced by human betacellulin gene transduction via retrograde pancreatic duct injection of an adenovirus vector. Biochem. Biophys. Res. Commun. 350, 987–993 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Peshavaria, M. et al. Regulation of pancreatic β-cell regeneration in the normoglycemic 60% partial-pancreatectomy mouse. Diabetes 55, 3289–3298 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Gu, G., Brown, J. R. & Melton, D. A. Direct lineage tracing reveals the ontogeny of pancreatic cell fates during mouse embryogenesis. Mech. Dev. 120, 35–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Kopp, J. L. et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 138, 653–665 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Solar, M. et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev. Cell 17, 849–860 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Kopinke, D. & Murtaugh, L. C. Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas. BMC Dev. Biol. 10, 38 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Seaberg, R. M. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat. Biotechnol. 22, 1115–1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Smukler, S. R. et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 8, 281–293 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Zulewski, H. et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Suzuki, A., Nakauchi, H. & Taniguchi, H. Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes 53, 2143–2152 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Gao, R. et al. Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes 52, 2007–2015 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Ramiya, V. K. et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med. 6, 278–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Jin, L. et al. Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc. Natl Acad. Sci. USA 110, 3907–3912 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee, J. et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. eLife 2, e00940 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rovira, M. et al. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc. Natl Acad. Sci. USA 107, 75–80 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Bensley, R. R. Studies on the pancreas of the guinea pig. Am. J. Anat. 12, 297–388 (1911).

    Article  Google Scholar 

  115. Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Desai, B. M. et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J. Clin. Invest. 117, 971–977 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Strobel, O. et al. In vivo lineage tracing defines the role of acinar-to-ductal transdifferentiation in inflammatory ductal metaplasia. Gastroenterology 133, 1999–2009 (2007).

    Article  PubMed  Google Scholar 

  118. Li, W.-C. et al. Activation of pancreatic-duct-derived progenitor cells during pancreas regeneration in adult rats. J. Cell Sci. 123, 2792–2802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sharma, A. et al. The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes 48, 507–513 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Jensen, J. N. et al. Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. YGAST 128, 728–741 (2005).

    CAS  Google Scholar 

  121. Bonner-Weir, S. et al. Beta-cell growth and regeneration: replication is only part of the story. Diabetes 59, 2340–2348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Criscimanna, A. et al. Duct cells contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice. Gastroenterology 141, 1451–1462 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Van de Casteele, M. et al. Neurogenin3+ cells contribute to β-cell neogenesis and proliferation in injured adult mouse pancreas. Cell Death Dis. 4, e523 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xiao, X. et al. No evidence for β cell neogenesis in murine adult pancreas. J. Clin. Invest. 123, 2207–2217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Van De Casteele, M. et al. Partial duct ligation: β-cell proliferation and beyond. Diabetes 63, 2567–2577 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Pan, F. C. et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 140, 751–764 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jonckheere, N. et al. Analysis of mPygo2 mutant mice suggests a requirement for mesenchymal Wnt signaling in pancreatic growth and differentiation. Dev. Biol. 318, 224–235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Murtaugh, L. C., Law, A. C., Dor, Y. & Melton, D. A. Beta-catenin is essential for pancreatic acinar but not islet development. Development 132, 4663–4674 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Papadopoulou, S. & Edlund, H. Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function. Diabetes 54, 2844–2851 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Dessimoz, J., Bonnard, C., Huelsken, J. & Grapin-Botton, A. Pancreas-specific deletion of β-catenin reveals Wnt-dependent and Wnt-independent functions during development. Curr. Biol. 15, 1677–1683 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Rankin, M. M. et al. β-Cells are not generated in pancreatic duct ligation-induced injury in adult mice. Diabetes 62, 1634–1645 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Blaine, S. A. et al. Adult pancreatic acinar cells give rise to ducts but not endocrine cells in response to growth factor signaling. Development 137, 2289–2296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Inada, A. et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc. Natl Acad. Sci. USA 105, 19915–19919 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kopinke, D. et al. Lineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas. Development 138, 431–441 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kopp, J. L. et al. Progenitor cell domains in the developing and adult pancreas. Cell Cycle 10, 1921–1927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Strobel, O. et al. Beta cell transdifferentiation does not contribute to preneoplastic/metaplastic ductal lesions of the pancreas by genetic lineage tracing in vivo. Proc. Natl Acad. Sci. USA 104, 4419–4424 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chera, S. et al. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature 514, 503–507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hosokawa, S. et al. Impact of Sox9 dosage and Hes1-mediated Notch signaling in controlling the plasticity of adult pancreatic duct cells in mice. Sci. Rep. 5, 8518 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bockman, D. E., Boydston, W. R. & Anderson, M. C. Origin of tubular complexes in human chronic pancreatitis. Am. J. Surgery 144, 243–249 (1982).

    Article  CAS  Google Scholar 

  140. Brereton, M. F. et al. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat. Commun. 5, 4639 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Talchai, C., Xuan, S., Lin, H. V., Sussel, L. & Accili, D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150, 1223–1234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Morris, J. P., Cano, D. A., Sekine, S., Wang, S. C. & Hebrok, M. Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J. Clin. Invest. 120, 508–520 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kopp, J. L. et al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell 22, 737–750 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. C. Carrano (Univ. California, USA) for help with writing the manuscript and constructive comments. We apologize to our colleagues whose references were omitted owing to space constraints. J.L.K. is supported by grants from the Juvenile Diabetes Research Foundation (JDRF), National Pancreatic Cancer Canada Foundation, Pancreas Centre British Columbia, Canadian Institutes of Health Research and the National Institutes of Health. M.G. is supported by grants from the National Institutes of Health (DK05192 and DK104143) and the Helmsley Charitable Trust. M.S. is supported by grants from the National Institutes of Health (DK078803 and DK068471), the JDRF, the Helmsley Charitable Trust and the California Institute for Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maike Sander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopp, J., Grompe, M. & Sander, M. Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol 18, 238–245 (2016). https://doi.org/10.1038/ncb3309

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing