Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Metabolic exit from naive pluripotency

Spatiotemporally distinct pluripotent states captured in vitro provide an accessible way of modelling early human development. An intricate interplay between the metabolome and histone modifications is now shown to drive the metabolic switch from human naive to primed pluripotency, one of the earliest steps of embryogenesis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A metabolic switch for the naive-to-primed state transition in human embryonic stem cells (hESCs).

References

  1. Nichols, J. & Smith, A. Cell Stem Cell 4, 487–492 (2009).

    Article  CAS  Google Scholar 

  2. Wu, J. et al. Nature 521, 316–321 (2015).

    Article  CAS  Google Scholar 

  3. Zhou, W. et al. EMBO J. 31, 2103–2116 (2012).

    Article  CAS  Google Scholar 

  4. Sperber, H. et al. Nat. Cell Biol. 17, 1523–1535 (2105).

    Article  Google Scholar 

  5. Folmes, C. D. L., Dzeja, P. P., Nelson, T. J. & Terzic, A. Cell Stem Cell 11, 596–606 (2012).

    Article  CAS  Google Scholar 

  6. Shyh-Chang, N. et al. Science 339, 222–226 (2013).

    Article  Google Scholar 

  7. Carey, B. W., Finley, L. W. S., Cross, J. R., Allis, C. D. & Thompson, C. B. Nature 518, 413–416 (2015).

    Article  CAS  Google Scholar 

  8. Katada, S., Imhof, A. & Sassone-Corsi, P. Cell 148, 24–28 (2012).

    Article  CAS  Google Scholar 

  9. Ying, Q.-L. et al. Nature 453, 519–523 (2008).

    Article  CAS  Google Scholar 

  10. Berge, ten D. et al. Nat. Cell Biol. 13, 1–8 (2011).

    Article  Google Scholar 

  11. Gafni, O. et al. Nature 504, 282–286 (2013).

    Article  CAS  Google Scholar 

  12. Theunissen, T. W. et al. Cell Stem Cell 15, 471–487 (2014).

    Article  CAS  Google Scholar 

  13. Ware, C. B., Nelson, A. M. & Mecham, B. 111, 4484–4489 (2014).

  14. Chen, Y. et al. Cell Stem Cell 17, 116–124 (2015).

    Article  CAS  Google Scholar 

  15. Huang, K., Maruyama, T. & Fan, G. Cell Stem Cell 15, 410–415 (2014).

    Article  CAS  Google Scholar 

  16. Wu, J. & Belmonte, J. C. I. Nature 516, 172–173 (2014).

    Article  CAS  Google Scholar 

  17. Wu, J. & Belmonte, J. C. I. Cell Stem Cell 17, 509–525 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Izpisua Belmonte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Belmonte, J. Metabolic exit from naive pluripotency. Nat Cell Biol 17, 1519–1521 (2015). https://doi.org/10.1038/ncb3269

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing