Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systematic E2 screening reveals a UBE2D–RNF138–CtIP axis promoting DNA repair

Abstract

Ubiquitylation is crucial for proper cellular responses to DNA double-strand breaks (DSBs). If unrepaired, these highly cytotoxic lesions cause genome instability, tumorigenesis, neurodegeneration or premature ageing. Here, we conduct a comprehensive, multilayered screen to systematically profile all human ubiquitin E2 enzymes for impacts on cellular DSB responses. With a widely applicable approach, we use an exemplary E2 family, UBE2Ds, to identify ubiquitylation-cascade components downstream of E2s. Thus, we uncover the nuclear E3 ligase RNF138 as a key homologous recombination (HR)-promoting factor that functions with UBE2Ds in cells. Mechanistically, UBE2Ds and RNF138 accumulate at DNA-damage sites and act at early resection stages by promoting CtIP ubiquitylation and accrual. This work supplies insights into regulation of DSB repair by HR. Moreover, it provides a rich information resource on E2s that can be exploited by follow-on studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screening E2s for IRIF kinetics.
Figure 2: Screening E2s for DSB repair.
Figure 3: Screening E2s for DDR signalling.
Figure 4: DDR validation of selected E2s.
Figure 5: DNA-end resection links UBE2Ds with RNF138.
Figure 6: Phenotypic mimicry between UBE2Ds and RNF138.
Figure 7: UBE2Ds- and RNF138-dependent CtIP accrual and its ionizing-radiation-induced ubiquitylation.
Figure 8: N-terminal, ionizing-radiation-induced CtIP ubiquitylation promotes its recruitment and function.

Similar content being viewed by others

Accession codes

Accessions

PubChem Assay

References

  1. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deriano, L. & Roth, D. B. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu. Rev. Genet. 47, 433–455 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Sartori, A. A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Greenberg, R. A. et al. Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev. 20, 34–46 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Polo, S. E. & Jackson, S. P. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 25, 409–433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jackson, S. P. & Durocher, D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell 49, 795–807 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Kulathu, Y. & Komander, D. Atypical ubiquitylation—the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13, 508–523 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Wenzel, D. M., Stoll, K. E. & Klevit, R. E. E2s: structurally economical and functionally replete. Biochem. J. 433, 31–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Ye, Y. & Rape, M. Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell Biol. 10, 755–764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Povlsen, L. K. et al. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nat. Cell Biol. 14, 1089–1098 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Certo, M. T. et al. Tracking genome engineering outcome at individual DNA breakpoints. Nat. Methods 8, 671–676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies, O. R. et al. CtIP tetramer assembly is required for DNA-end resection and repair. Nat. Struct. Mol. Biol. 22, 150–157 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jazayeri, A. et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 8, 37–45 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Murakawa, Y. et al. Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells. Cancer Res. 67, 8536–8543 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, Y., Caron, P., Legube, G. & Paull, T. T. Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Res. 42, e19 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Polato, F. et al. CtIP-mediated resection is essential for viability and can operate independently of BRCA1. J. Exp. Med. 211, 1027–1036 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kakarougkas, A. et al. Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection. Nucleic Acids Res. 41, 10298–10311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Long, D. T., Joukov, V., Budzowska, M. & Walter, J. C. BRCA1 promotes unloading of the CMG Helicase from a stalled DNA replication Fork. Mol. Cell 56, 1–12 (2014).

    Article  Google Scholar 

  22. Cruz-García, A., López-Saavedra, A. & Huertas, P. BRCA1 accelerates CtIP-mediated DNA-End resection. Cell Rep. 9, 451–459 (2014).

    Article  PubMed  Google Scholar 

  23. Machida, Y. J. et al. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 23, 589–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y. et al. UBE2W interacts with FANCL and regulates the monoubiquitination of Fanconi anemia protein FANCD2. Mol. Cell 31, 113–122 (2011).

    Article  Google Scholar 

  25. Maréchal, A. et al. PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol. Cell 53, 235–246 (2014).

    Article  PubMed  Google Scholar 

  26. Adamson, B., Smogorzewska, A., Sigoillot, F. D., King, R. W. & Elledge, S. J. A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat. Cell Biol. 14, 318–328 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ikura, T. et al. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol. Cell. Biol. 27, 7028–7040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, C. et al. RNF168 forms a functional complex with RAD6 during the DNA damage response. J. Cell Sci. 126, 2042–2051 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jacquemont, C. & Taniguchi, T. Proteasome function is required for DNA damage response and Fanconi anemia pathway activation. Cancer Res. 67, 7395–7405 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Gudjonsson, T. et al. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell 150, 697–709 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Parsons, J. L. et al. CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins. Mol. Cell 29, 477–487 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Inagaki, A. et al. Human RAD18 interacts with ubiquitylated chromatin components and facilitates RAD9 recruitment to DNA double strand breaks. PLoS ONE 6, e23155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Watanabe, K. et al. RAD18 promotes DNA double-strand break repair during G1 phase through chromatin retention of 53BP1. Nucleic Acids Res. 37, 2176–2193 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giannini, A. L., Gao, Y. & Bijlmakers, M.-J. T-cell regulator RNF125/TRAC-1 belongs to a novel family of ubiquitin ligases with zinc fingers and a ubiquitin-binding domain. Biochem. J. 410, 101–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Yamada, M. et al. NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF). J. Biol. Chem. 281, 20749–20760 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Polanowska, J., Martin, J. S., Garcia-Muse, T., Petalcorin, M. I. R. & Boulton, S. J. A conserved pathway to activate BRCA1-dependent ubiquitylation at DNA damage sites. EMBO J. 25, 2178–2188 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. You, Z. et al. CtIP links DNA double-strand break sensing to resection. Mol. Cell 36, 954–969 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morris, J. R. & Solomon, E. BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum. Mol. Genet. 13, 807–817 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Kaidi, A., Weinert, B. T., Choudhary, C. & Jackson, S. P. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329, 1348–1353 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andres, S. N. et al. Tetrameric Ctp1 coordinates DNA binding and DNA bridging in DNA double-strand-break repair. Nat. Struct. Mol. Biol. 22, 158–166 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murina, O. et al. FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks. Cell Rep. 7, 1030–1038 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Ismail, I. H. et al. RNF138 is an E3 ubiquitin ligase that displaces Ku to promote DNA end resection and regulate DNA repair pathway choice. Nat. Cell Biol. 17, 1446–1447 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Galanty, Y., Belotserkovskaya, R., Coates, J. & Jackson, S. P. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev. 26, 1179–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smeenk, G. et al. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. J. Cell Sci. 126, 889–903 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Markson, G. et al. Analysis of the human E2 ubiquitin conjugating enzyme protein interaction network. Genome Res. 19, 1905–1911 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Paulsen, R. D. et al. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol. Cell 35, 228–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Curtin, N. J. DNA repair dysregulation from cancer driver to therapeutic target. Nat. Rev. Cancer 12, 801–817 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Mattern, M. R., Wu, J. & Nicholson, B. Ubiquitin-based anticancer therapy: carpet bombing with proteasome inhibitors vs surgical strikes with E1, E2, E3, or DUB inhibitors. Biochim. Biophys. Acta 1823, 2014–2021 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. You, Z. & Bailis, J. M. DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol. 20, 402–409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Limoli, C. L. & Ward, J. F. A new method for introducing double-strand breaks into cellular DNA. Radiat. Res. 134, 160–169 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Lukas, C., Falck, J., Bartkova, J., Bartek, J. & Lukas, J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat. Cell Biol. 5, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Hodson, C., Purkiss, A., Miles, J. A. & Walden, H. Structure of the human FANCL RING-Ube2T complex reveals determinants of cognate E3-E2 selection. Structure 22, 337–344 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Michalski, A. et al. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell. Proteomics 10, M111.011015 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all S.P.J. laboratory members for support and comments. We thank T. Oelschlaegel (Gurdon Institute, Cambridge University, UK) for polyclonal GFP–Flag–MRE11 U2OS cells, J. Forment (Gurdon Institute, Cambridge University, UK) for stable GFP–CtIP-WT U2OS cells, C. le Sage for helping to generate U2OS cells stably expressing GFP–CtIP variants (12KR, 6KR and 5KR), J. Travers (Gurdon Institute, Cambridge University, UK) for the pEGFP-C1/TO plasmid and for helping establish inducible GFP–RNF138 U2OS cells, the Y. Shiloh laboratory for the RPA2 mouse hybridoma, the Y. Shiloh (Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Israel) and M. Oren (The Weizmann Institute of Science, Israel) laboratories for HA–ubiquitin plasmid, the P. Cohen (MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, UK) laboratory for UBE2T plasmid, L. Pellegrini and N. Rzechorzek (Department of Biochemistry, Cambridge University, UK) for providing baculovirus-purified CtIP, R. Carazo-Salas for access to the Opera, A. Riddell for flow-cytometry cell sorting support, M. Herzog and N. Smith for advice on Circos plots, the Gurdon Institute bioinformatics core facility, in particular C. Bradshaw and G. Allen, and the Gurdon Institute imaging facility, in particular A. Sossick, N. Lawrence and R. Butler. Research in the S.P.J. laboratory is funded by Cancer Research UK Program Grant C6/A11224, the European Research Council (DDREAM), the European Community Seventh Framework Programme grant agreement no. HEALTH-F2-2010-259893 (DDResponse). Core infrastructure funding was provided by Cancer Research UK Grant C6946/A14492 and Wellcome Trust Grant WT092096. S.P.J. receives a salary from the University of Cambridge, supplemented by Cancer Research UK. C.K.S. was financially supported by a FEBS Return-to-Europe fellowship. P.B. is supported by the Emmy Noether Programme of the German Research Foundation (DFG, BE 5342/1-1).

Author information

Authors and Affiliations

Authors

Contributions

C.K.S./Y.G. and S.P.J. conceived the project. C.K.S./Y.G. performed the experiments with help from M.S.-C. and J.C. C.K.S./Y.G. analysed data. LC–MS/MS was by P.B. M.D., M.C. and S.J. generated reagents. C.K.S./Y.G. and S.P.J. wrote the manuscript. All authors made suggestions and commented on the manuscript.

Corresponding authors

Correspondence to Yaron Galanty or Stephen P. Jackson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Table 1 Sequences of siRNA oligonucleotides used in this study.
Supplementary Table 2 HR and mutEJ repair efficiency measured by TLR assay.
Supplementary Table 3 Sequences of primers used in this study.
Supplementary Table 4 Antibodies used in this study.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1659 kb)

Supplementary Table 5

Supplementary Information (XLSX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, C., Galanty, Y., Sczaniecka-Clift, M. et al. Systematic E2 screening reveals a UBE2D–RNF138–CtIP axis promoting DNA repair. Nat Cell Biol 17, 1458–1470 (2015). https://doi.org/10.1038/ncb3260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing