Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A high-throughput platform for real-time analysis of membrane fission reactions reveals dynamin function


Dynamin, the paradigmatic membrane fission catalyst, assembles as helical scaffolds that hydrolyse GTP to sever the tubular necks of clathrin-coated pits. Using a facile assay system of supported membrane tubes (SMrT) engineered to mimic the dimensions of necks of clathrin-coated pits, we monitor the dynamics of a dynamin-catalysed tube-severing reaction in real time using fluorescence microscopy. We find that GTP hydrolysis by an intact helical scaffold causes progressive constriction of the underlying membrane tube. On reaching a critical dimension of 7.3 nm in radius, the tube undergoes scission and concomitant splitting of the scaffold. In a constant GTP turnover scenario, scaffold assembly and GTP hydrolysis-induced tube constriction are kinetically inseparable events leading to tube-severing reactions occurring at timescales similar to the characteristic fission times seen in vivo. We anticipate SMrT templates to allow dynamic fluorescence-based detection of conformational changes occurring in self-assembling proteins that remodel membranes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Supported membrane tubes.
Figure 2: Dynamin scaffold assembly.
Figure 3: GTP hydrolysis-induced tube constriction precedes tube scission.
Figure 4: Coordination between scaffold assembly and tube scission in constant presence of GTP.
Figure 5: Role of dynamin PHD in tube scission.
Figure 6: Proposed mechanism of dynamin-catalysed tube scission.


  1. 1

    Faelber, K. et al. Structural insights into dynamin-mediated membrane fission. Structure 20, 1621–1628 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Schmid, S. L. & Frolov, V. A. Dynamin: functional design of a membrane fission catalyst. Annu. Rev. Cell Dev. Biol. 27, 79–105 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Ferguson, S. M. & De Camilli, P. Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol. 13, 75–88 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Chappie, J. S. & Dyda, F. Building a fission machine–structural insights into dynamin assembly and activation. J. Cell Sci. 2773–2784 (2013).

  5. 5

    Chappie, J. S., Acharya, S., Leonard, M., Schmid, S. L. & Dyda, F. G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature 465, 435–440 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Kozlovsky, Y. & Kozlov, M. M. Membrane fission: model for intermediate structures. Biophys. J. 85, 85–96 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Frolov, V. A., Escalada, A., Akimov, S. A. & Shnyrova, A. V. Geometry of membrane fission. Chem. Phys. Lipids 185, 129–140 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Zhang, P. & Hinshaw, J. E. Three-dimensional reconstruction of dynamin in the constricted state. Nat. Cell Biol. 3, 922–926 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Roux, A. et al. Membrane curvature controls dynamin polymerization. Proc. Natl Acad. Sci. USA 107, 4141–4146 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Bashkirov, P. V. et al. GTPase cycle of Dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135, 1276–1286 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Shnyrova, A. V. et al. Geometric catalysis of membrane fission driven by flexible dynamin rings. Science 339, 1433–1436 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Morlot, S. et al. Membrane shape at the edge of the Dynamin Helix sets location and duration of the fission reaction. Cell 151, 619–629 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Chappie, J. S. et al. A pseudoatomic model of the Dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell 147, 209–222 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Sundborger, A. C. et al. A dynamin mutant defines a superconstricted prefission state. Cell Rep. 8, 734–742 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Roux, A. Reaching a consensus on the mechanism of dynamin? F1000Prime Rep. 6, 86 (2014).

    Article  Google Scholar 

  16. 16

    Iversen, T. G., Skretting, G., van Deurs, B. & Sandvig, K. Clathrin-coated pits with long, dynamin-wrapped necks upon expression of a clathrin antisense RNA. Proc. Natl Acad. Sci. USA 100, 5175–5180 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Hsieh, W.-T. et al. Curvature sorting of peripheral proteins on solid-supported wavy membranes. Langmuir 28, 12838–12843 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Jung, H., Robison, A. D. & Cremer, P. S. Detecting protein-ligand binding on supported bilayers by local pH modulation. J. Am. Chem. Soc. 131, 1006–1014 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Pucadyil, T. J. & Schmid, S. L. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135, 1263–1275 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Ramachandran, R. et al. Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission. Mol. Biol. Cell 20, 4630–4639 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Danino, D., Moon, K.-H. & Hinshaw, J. E. Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin. J. Struct. Biol. 147, 259–267 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Doyon, J. B. et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat. Cell Biol. 13, 331–337 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Cocucci, E., Gaudin, R. & Kirchhausen, T. Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit. Mol. Biol. Cell 25, 3595–3609 (2014).

    Article  Google Scholar 

  27. 27

    Mattila, J.-P. et al. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission. Nature 524, 109–113 (2015).

    CAS  Article  Google Scholar 

  28. 28

    Lemmon, M. A. & Ferguson, K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 350, 1–8 (2000).

    CAS  Article  Google Scholar 

  29. 29

    Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol. 9, 257–260 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Mehrotra, N., Nichols, J. & Ramachandran, R. Alternate pleckstrin homology domain orientations regulate dynamin-catalyzed membrane fission. Mol. Biol. Cell 25, 879–890 (2014).

    Article  Google Scholar 

  31. 31

    Fuhrmans, M. & Müller, M. Coarse-grained simulation of dynamin-mediated fission. Soft Matter 11, 1464–1480 (2015).

    CAS  Article  Google Scholar 

  32. 32

    Mears, J. A., Ray, P. & Hinshaw, J. E. A corkscrew model for dynamin constriction. Structure 15, 1190–1202 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Turner, D. K. et al. Reduction of artifacts in fluorescence correlation spectroscopy due to sample adsorption on optical glass surfaces. Appl. Spectrosc. 67, 692–698 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Neumann, S., Pucadyil, T. J. & Schmid, S. L. Analyzing membrane remodeling and fission using supported bilayers with excess membrane reservoir. Nat. Protoc. 8, 213–222 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Ellenberg, J. et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138, 1193–1206 (1997).

    CAS  Article  Google Scholar 

  36. 36

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  Article  Google Scholar 

  37. 37

    Kunding, A. H., Mortensen, M. W., Christensen, S. M. & Stamou, D. A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. Biophys. J. 95, 1176–1188 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Shlomovitz, R., Gov, N. S. & Roux, A. Membrane-mediated interactions and the dynamics of dynamin oligomers on membrane tubes. New J. Phys. 13, 065008 (2011).

    Article  Google Scholar 

Download references


We thank S. Schmid, R. Mallik and the Pucadyil laboratory members for discussions and critical comments on the manuscript, S. Holkar for the scanning electron microscopy, and V. Vitthal for confocal microscopy. S.D. and S.C.K. acknowledge the Council for Scientific and Industrial Research (CSIR) for fellowships. T.J.P. is an Intermediate Fellow of the Wellcome Trust-DBT India Alliance and thanks the Alliance and IISER Pune for funds.

Author information




S.D. and T.J.P. designed experiments. S.D. performed all experiments. S.D. and S.C.K. designed and standardized preparation of SMrT templates. S.D. and T.J.P analysed data and wrote the manuscript.

Corresponding author

Correspondence to Thomas J. Pucadyil.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Calculation of calibration constant to equate tube fluorescence to physical dimensions.

Fluorescence micrographs of SMrT templates with preassembled scaffolds are acquired in the tube fluorescence channel (Step 1). The bimodal frequency distribution of pixel intensities along the tube length is fitted to a sum of 2 gaussian function (Step 2). The lower mean represents the tube fluorescence under the scaffold, which is then equated to the tube radius by I = KR2 where, I = tube fluorescence under scaffold; R = tube radius, 11.2 nm9 to calculate the calibration constant K.

Supplementary Figure 2 GTP hydrolysis-induced tube scission leads to splitting of scaffolds.

A panel of kymographs from time-lapse movies monitoring GTP addition to Alexa488-labeled dynamin scaffolds preassembled on SMrT templates.

Supplementary information

Supplementary Information

Supplementary Information (PDF 799 kb)

Dynamics of dynamin scaffold assembly on SMrT templates.

The movie shows tube fluorescence changes on scaffold assembly on SMrT templates. Scale bar = 5 μm. (MOV 4242 kb)

Dynamics of dynamin scaffold assembly on a freestanding membrane tether.

The movie shows tube fluorescence changes on scaffold assembly on a freestanding tether. Scale bar = 5 μm. (MOV 1716 kb)

Tube scission events with preassembed scaffolds on SMrT templates.

The movie shows tube fluorescence changes in response to GTP addition to preassembled scaffolds on SMrT templates. Scale bar = 5 μm. (MOV 501 kb)

Tube scission events with dynamin in the constant presence of GTP on SMrT templates.

The movie shows tube fluorescence changes in response to dynamin addition to SMrT templates bathed in excess (1 mM) GTP. Scale bar = 5 μm. (MOV 1237 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dar, S., Kamerkar, S. & Pucadyil, T. A high-throughput platform for real-time analysis of membrane fission reactions reveals dynamin function. Nat Cell Biol 17, 1588–1596 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing