Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrin endosomal signalling suppresses anoikis

Abstract

Integrin-containing focal adhesions transmit extracellular signals across the plasma membrane to modulate cell adhesion, signalling and survival. Although integrins are known to undergo continuous endo/exocytic traffic, the potential impact of endocytic traffic on integrin-induced signals is unknown. Here, we demonstrate that integrin signalling is not restricted to cell–ECM adhesions and identify an endosomal signalling platform that supports integrin signalling away from the plasma membrane. We show that active focal adhesion kinase (FAK), an established marker of integrin–ECM downstream signalling, localizes with active integrins on endosomes. Integrin endocytosis positively regulates adhesion-induced FAK activation, which is early endosome antigen-1 and small GTPase Rab21 dependent. FAK binds directly to purified endosomes and becomes activated on them, suggesting a role for endocytosis in enhancing distinct integrin downstream signalling events. Finally, endosomal integrin signalling contributes to cancer-related processes such as anoikis resistance, anchorage independence and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: pFAK-Y397 localizes to endosomes together with β1-integrin.
Figure 2: pFAK-Y397 localizes to endosomes together with fibronectin.
Figure 3: Inhibition of integrin endocytosis attenuates integrin signalling.
Figure 4: FAK recruitment and activation on integrin-positive endosomes.
Figure 5: Endosomal proteome.
Figure 6: Integrin signalling is EEA1 dependent.
Figure 7: Integrin endosomal signalling and anoikis sensitivity are Rab21 and EEA1 dependent.
Figure 8: Conclusion model showing the role of adhesion-induced integrin endosomal signalling in the regulation of anoikis.

Similar content being viewed by others

References

  1. Harburger, D. S. & Calderwood, D. A. Integrin signalling at a glance. J. Cell. Sci. 122, 159–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Winograd-Katz, S. E., Fassler, R., Geiger, B. & Legate, K. R. The integrin adhesome: from genes and proteins to human disease. Nat. Rev. Mol. Cell Biol. 15, 273–288 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Zaidel-Bar, R., Itzkovitz, S., Ma’ayan, A., Iyengar, R. & Geiger, B. Functional atlas of the integrin adhesome. Nat. Cell Biol. 9, 858–867 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Franceschi, N., Hamidi, H., Alanko, J., Sahgal, P. & Ivaska, J. Integrin traffic—the update. J. Cell. Sci. 128, 839–852 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ceresa, B. P. & Schmid, S. L. Regulation of signal transduction by endocytosis. Curr. Opin. Cell Biol. 12, 204–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Scita, G. & Di Fiore, P. P. The endocytic matrix. Nature 463, 464–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Arjonen, A., Alanko, J., Veltel, S. & Ivaska, J. Distinct recycling of active and inactive β1 integrins. Traffic 13, 610–625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dozynkiewicz, M. A. et al. Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev. Cell 22, 131–145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pellinen, T. et al. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of β1-integrins. J. Cell Biol. 173, 767–780 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muller, P. A. et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 139, 1327–1341 (2009).

    Article  PubMed  Google Scholar 

  11. Muller, P. A. et al. Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 32, 1252–1265 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Frisch, S. M., Vuori, K., Ruoslahti, E. & Chan-Hui, P. Y. Control of adhesion-dependent cell survival by focal adhesion kinase. J. Cell Biol. 134, 793–799 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bridgewater, R. E., Norman, J. C. & Caswell, P. T. Integrin trafficking at a glance. J. Cell. Sci. 125, 3695–3701 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Caswell, P. T., Vadrevu, S. & Norman, J. C. Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell Biol. 10, 843–853 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Brunton, V. G. & Frame, M. C. Src and focal adhesion kinase as therapeutic targets in cancer. Curr. Opin. Pharmacol. 8, 427–432 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Schauer, K. et al. Probabilistic density maps to study global endomembrane organization. Nat. Methods 7, 560–566 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Stenmark, H. et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287–1296 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lobert, V. H. et al. Ubiquitination of α 5 β 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev. Cell 19, 148–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Monteiro, P. et al. Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia. J. Cell Biol. 203, 1063–1079 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Christoforides, C., Rainero, E., Brown, K. K., Norman, J. C. & Toker, A. PKD controls αvβ3 integrin recycling and tumor cell invasive migration through its substrate Rabaptin-5. Dev. Cell 23, 560–572 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bass, M. D. et al. A syndecan-4 hair trigger initiates wound healing through caveolin- and RhoG-regulated integrin endocytosis. Dev. Cell 21, 681–693 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kirchhausen, T., Macia, E. & Pelish, H. E. Use of dynasore, the small molecule inhibitor of dynamin, in the regulation of endocytosis. Methods Enzymol. 438, 77–93 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hill, T. A. et al. Inhibition of dynamin mediated endocytosis by the dynoles—synthesis and functional activity of a family of indoles. J. Med. Chem. 52, 3762–3773 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Damke, H., Baba, T., Warnock, D. E. & Schmid, S. L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915–934 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Mai, A. et al. Competitive binding of Rab21 and p120RasGAP to integrins regulates receptor traffic and migration. J. Cell Biol. 194, 291–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pellinen, T. et al. Integrin trafficking regulated by Rab21 is necessary for cytokinesis. Dev. Cell 15, 371–385 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Zaidel-Bar, R. & Geiger, B. The switchable integrin adhesome. J. Cell. Sci. 123, 1385–1388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sandri, C. et al. The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res. 22, 1479–1501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mu, F. T. et al. EEA1, an early endosome-associated protein. EEA1 is a conserved α-helical peripheral membrane protein flanked by cysteine “fingers” and contains a calmodulin-binding IQ motif. J. Biol. Chem. 270, 13503–13511 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Christoforidis, S., McBride, H. M., Burgoyne, R. D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Erdmann, K. S. et al. A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev. Cell 13, 377–390 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miaczynska, M. et al. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116, 445–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Miaczynska, M., Pelkmans, L. & Zerial, M. Not just a sink: endosomes in control of signal transduction. Curr. Opin. Cell Biol. 16, 400–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Zoncu, R. et al. A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136, 1110–1121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paoli, P., Giannoni, E. & Chiarugi, P. Anoikis molecular pathways and its role in cancer progression. Biochim. Biophys. Acta 1833, 3481–3498 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Prutzman, K. C. et al. The focal adhesion targeting domain of focal adhesion kinase contains a hinge region that modulates tyrosine 926 phosphorylation. Structure 12, 881–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Owen, J. D., Ruest, P. J., Fry, D. W. & Hanks, S. K. Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol. Cell. Biol. 19, 4806–4818 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wennerberg, K. et al. The cytoplasmic tyrosines of integrin subunit β1 are involved in focal adhesion kinase activation. Mol. Cell. Biol. 20, 5758–5765 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schlaepfer, D. D. et al. Tumor necrosis factor-α stimulates focal adhesion kinase activity required for mitogen-activated kinase-associated interleukin 6 expression. J. Biol. Chem. 282, 17450–17459 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Altschuler, Y. et al. Redundant and distinct functions for dynamin-1 and dynamin-2 isoforms. J. Cell Biol. 143, 1871–1881 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lawe, D. C., Patki, V., Heller-Harrison, R., Lambright, D. & Corvera, S. The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 binding. Critical role of this dual interaction for endosomal localization. J. Biol. Chem. 275, 3699–3705 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Miyauchi, K., Kim, Y., Latinovic, O., Morozov, V. & Melikyan, G. B. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137, 433–444 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell. 10, 839–850 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Virtakoivu, R., Pellinen, T., Rantala, J. K., Perala, M. & Ivaska, J. Distinct roles of AKT isoforms in regulating β1-integrin activity, migration, and invasion in prostate cancer. Mol. Biol. Cell 23, 3357–3369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Azioune, A., Storch, M., Bornens, M., Thery, M. & Piel, M. Simple and rapid process for single cell micro-patterning. Lab Chip 9, 1640–1642 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Arjonen, A. et al. Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. J. Clin. Invest. 124, 1069–1082 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vuoriluoto, K. et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 30, 1436–1448 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Shevchenko, A. et al. A strategy for identifying gel-separated proteins in sequence databases by MS alone. Biochem. Soc. Trans. 24, 893–896 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Cote, R. G. et al. The PRIDE Converter 2 framework: an improved suite of tools to facilitate data submission to the PRIDE database and the ProteomeXchange consortium. Mol. Cell Proteomics 12, 1682–1689 (2012).

    Article  CAS  Google Scholar 

  52. Wang, R. et al. PRIDE Inspector: a tool to visualize and validate MS proteomics data. Nat. Biotech. 30, 135–137 (2012).

    Article  CAS  Google Scholar 

  53. Hoon, M. J. L. d., Imoto, S., Nolan, J. & Miyano, S. Open source clustering software. Bioinformatics 20, 1453–1454 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Saldanha, A. J. Java Treeview—extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Saito, R. et al. A travel guide to Cytoscape plugins. Nat. Methods 9, 1069–1076 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cowley, M. J. et al. PINA v2.0: mining interactome modules. Nucleic Acids Res. 40, D862–D865 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Schiller, H. B., Friedel, C. C., Boulegue, C. & Fässler, R. Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep. 12, 259–266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schiller, H. B. et al. β1- and αv-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat. Cell Biol. 15, 625–636 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Humphries, J. D. et al. Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci. Signal. 2, ra51 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ng, D. H. J., Humphries, J. D., Byron, A., Millon-Frémillon, A. & Humphries, M. J. Microtubule-dependent modulation of adhesion complex composition. PLoS ONE 9, e115213 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Robertson, J. et al. Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat. Commun. 6, 6265 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Vizcaino, J. A. et al. The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. 41, D1063–D1069 (2013).

Download references

Acknowledgements

We thank J. Siivonen and P. Laasola for excellent technical assistance, M. Georgiadou, D. Schlaepfer and J. Heino for insightful comments on the manuscript and H. Hamidi for scientific writing and editing of the manuscript. S. Corvera is acknowledged for the GFP–EEA1 plasmid (Addgene), D. Schlaepfer for the FAK wt and −/− MEFs and the GFP–FAK plasmids, T. Näreoja and S. Koho for assistance with the STED instrument, and Cell Imaging Core facility, University of Turku Centre for Biotechnology, and the Nikon Imaging Centre at Institut Curie-CNRS for help with the imaging. Turku Centre for Disease Modelling is acknowledged for help with the metastasis assays. This study has been supported by the Academy of Finland, ERC Starting Grant, ERC Consolidator Grant, the Sigrid Juselius Foundation, and the Finnish Cancer Organization. J.A. has been supported by the Turku Doctoral Program of Biomedical Sciences and an EMBO Short-Term Fellowship. G.J. is supported by an EMBO Long-Term Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.I. conceived and supervised the study, carried out experiments, analysed the data and wrote the manuscript with the contribution of J.A., B.G. and A.M. K.S. and B.G. supervised and helped analyse micropatterning experiments and gave helpful insights and discussion. J.A. designed, carried out and analysed most of the experiments with crucial help from A.M., R.K. and M.S. G.J. and A.M. designed, carried out and analysed the mass spectrometry experiments.

Corresponding author

Correspondence to Johanna Ivaska.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Validation of the pFAK-Y397 antibody.

(a,b) Validation of the pFAK-Y397 antibody in Fak−/− and Fak+/+ MEF cell lysates (a) and in TIFFs in the presence of FAK-Y397 phosphorylation inhibitors (1 μM PF271 or PF228) (b) (mean ± SEM, n = 3 independent experiments). Statistics source data can be found in Supplementary Table 2. (c) Quantification of pFAK-Y397 levels following FAK-14 inhibitor (10 μM) treatment. Representative confocal images and ROIs of focal adhesions are shown (mean fluorescence intensity ± SEM, n = 22 cells pooled from two independent experiments). (d) Individual fluorescence density plots of MDA-MB-231 cells plated on crossbow-shaped fibronectin-coated micropatterns and stained for active β1-integrin and pFAK-Y397. Shown are x-axis views. The analysis of these cells was used to generate the 3D probabilistic density plots shown in Fig. 1a. (e) Confocal images of pFAK-Y397 and total or active β1-integrin staining in GFP-Rab21 overexpressing TIFFs plated on fibronectin (45 min). Representative ROIs from endosomes and box plot of the distance between adjacent puncta of active β1-integrin and pFAK or Rab21 in GFP-Rab21-positive endosomes or of pFAK and pFAK outside the endosomes (in pixels) (box plots show the 25th–75th percentiles delineated by the upper and lower limits of the box; the median is shown by the horizontal line inside the box. Whiskers indicate maxima and minima). n = the number of active β1-integrin-pFAK, active β1-integrin-Rab21 and pFAK-pFAK doublets (indicated in the figure) analysed from multiple cells (numbers indicated in the figure) from three independent experiments are indicated. Mann–Whitney test P values are provided.

Supplementary Figure 2 ECM-induced downstream signalling is not due to growth factor receptor activation.

(a) Quantification of kinase activity in NCI-H460 cells plated on collagen. Representative blots are shown (mean ± SEM, n = 3 independent experiments). (b) Quantification of human phospho-receptor tyrosine kinase array in NCI-H460 cells kept in suspension or plated on collagen (45 min). Positive control is an antibody against phospho-tyrosine. Representative blots of cell lysates used for the array are shown (mean phosphoprotein detection ± SEM from two independent experiments). Student’s two-tailed unpaired t-test P values are provided and statistics source data can be found in Supplementary Table 2. Unprocessed original scans of blots are shown in Supplementary Fig. 9.

Supplementary Figure 3 Dynamin inhibition downregulates integrin receptor endocytosis.

(a,b) Integrin receptor endocytosis in NCI-H460 cells plated on collagen for 45 min in the presence of active β1-integrin (9EG7) antibody (45 min) ± dynasore. (a) Representative confocal images and quantification of the proportion of endocytosed integrin receptors based on antibody staining (n(DMSO) = 52 cells, n(dynasore) = 54 cells, pooled from three independent experiments, mean ± SEM). (b) Flow cytometry-based analysis of integrin endocytosis. Receptor internalisation, at the indicated time points, was calculated as an inverse ratio of total 9EG7-labelled integrin remaining on the cell surface compared to time point 0 (mean ± SEM, n = 3 independent experiments). (c) Transferrin endocytosis in NCI-H460 cells plated on collagen for 45 min in the presence of 555-labelled-transferrin (15 min) ± dynasore. Representative confocal images and quantification of the total levels of endocytosed transferrin are shown (n(DMSO) = 35 cells, n(dynasore) = 32 cells, pooled from three independent experiments, mean ± SEM). Student’s two-tailed unpaired t-test P values are provided. Statistics source data can be found in Supplementary Table 2.

Supplementary Figure 4 Inhibition of integrin endocytosis attenuates integrin signalling.

(a,b) Representative blots of kinase activity in TIFFs plated on collagen (a quantified in Fig. 3c) and fibronectin (b quantified in Fig. 3d) ± dynasore. (c,d) Analysis of kinase activity in MDA-MB-231 cells plated on collagen (c) and fibronectin (d) ± dynasore. Representative blots (c,d) and quantification (c) are shown (mean ± SEM, n = 3 independent experiments). (e) Analysis of kinase activity in NCI-H460 cells plated on collagen ± 10 μM Dyngo4a. Representative blots and quantifications are shown (mean ± SEM, n = 3 independent experiments). (f) Analysis of kinase activity in GFP or GFP-Dyn2K44A overexpressing NCI-H460 cells plated on collagen. Representative blot and quantification of normalised band integrated densities are shown (three independent experiments). (g) Flow cytometry quantification of total cell surface β1-integrin levels in NCI-H460 cells held in suspension or plated on collagen (45 min) ± dynasore (mean fluorescence ± SEM, n = 3 independent experiments). (h) Subcellular fractionation of NCI-H460 cells plated on collagen (45 min) ± dynasore. Representative blots of the plasma membrane (PM), cytoplasm (Cyto) and endosomal fractions (Endo) are shown (three independent experiments). (i) Representative immunoblot analysing the recruitment of recombinant FAK to purified endosomes derived from either control- or β1-integrin-silenced Fak−/− MEFs (different siRNA to one used in Fig. 4c; three independent experiments). Please note that silencing of β1-integrin induces cellular levels of β3-integrin. This might contribute to the residual FAK recruitment to the β1-integrin silenced endosomal fraction. Student’s two-tailed unpaired t-test P values are provided. Statistics source data can be found in Supplementary Table 2. Unprocessed original scans of blots are shown in Supplementary Fig. 9.

Supplementary Figure 5 Dynamin inhibition affects cell spreading.

MDA-MB-231 cells (a) or NCI-H460 cells (b) plated on collagen for the indicated times ± dynasore (three independent experiments). (c) Quantification of FAK activation (pFAK-Y397 levels) in NCI-H460 cells incubated with collagen (Col I) or BSA-coated beads in suspension (45 min) ± dynasore (mean ± SEM, n = 3 independent experiments). Student’s two-tailed unpaired t-test P values are provided and statistics source data can be found in Supplementary Table 2. Unprocessed original scans of blots are shown in Supplementary Fig. 9.

Supplementary Figure 6 Rab5, Rab21 and EEA1 are important for integrin-mediated FAK activation.

(a,b) Representative blots and quantification of pFAK levels in GFP and GFP-Rab21 (a) or GFP-Rab5-CA (b) overexpressing MDA-MB-231 cells plated on collagen (n(a) = 3, n(b) = 6 independent experiments, mean ± SEM). (c) Active β1-integrin (12G10) and pFAK-Y397 localization in GFP-EEA1 expressing TIFFs plated on fibronectin (45 min). (d) Representative blot of pFAK-Y397 levels in control or EEA1 smart pool silenced NCI-H460 cells plated on collagen. Student’s two-tailed unpaired t-test P values are provided and statistics source data can be found in Supplementary Table 2. Unprocessed original scans of blots are shown in Supplementary Fig. 9.

Supplementary Figure 7 APPL1 is not important for anoikis suppression.

(a,b) Quantification of caspase-3 positive apoptotic TIFFs ± Dyngo4a (a), and following APPL1 silencing (b) (mean fluorescence ± SEM, n = 3 independent experiments). Student’s t-test P values are provided and statistics source data can be found in Supplementary Table 2.

Supplementary Figure 8 Anchorage-independent growth and metastases of MDA-MB-231 cells are sensitive to FAK and dynamin inhibition and Rab21 silencing.

(a) MDA-MB-231 cells were plated on agar and incubated with the indicated drugs. Anchorage-independent growth was assessed by counting the number of cells per cluster with intact nuclei (mean ± SEM, n = 6 fields of view assessed from three independent experiments). (b) Representative images showing extravasation of siCtrl- and siRab21-treated MDA-MB-231 cells in mouse lungs. Student’s t-test P values are provided.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5715 kb)

Supplementary Table 1

Supplementary Information (XLS 1013 kb)

Supplementary Table 2

Supplementary Information (XLSX 58 kb)

Supplementary Table 3

Supplementary Information (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanko, J., Mai, A., Jacquemet, G. et al. Integrin endosomal signalling suppresses anoikis. Nat Cell Biol 17, 1412–1421 (2015). https://doi.org/10.1038/ncb3250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3250

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer