Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An instructive role for C. elegans E-cadherin in translating cell contact cues into cortical polarity

Abstract

Cell contacts provide spatial cues that polarize early embryos and epithelial cells. The homophilic adhesion protein E-cadherin is required for contact-induced polarity in many cells. However, it is debated whether E-cadherin functions instructively as a spatial cue, or permissively by ensuring adequate adhesion so that cells can sense other contact signals. In Caenorhabditis elegans, contacts polarize early embryonic cells by recruiting the RhoGAP PAC-1 to the adjacent cortex, inducing PAR protein asymmetry. Here we show that the E-cadherin HMR-1, which is dispensable for adhesion, functions together with the α-catenin HMP-1, the p120 catenin JAC-1, and the previously uncharacterized linker PICC-1 (human CCDC85A-C) to bind PAC-1 and recruit it to contacts. Mislocalizing the HMR-1 intracellular domain to contact-free surfaces draws PAC-1 to these sites and depolarizes cells, demonstrating an instructive role for HMR-1 in polarization. Our findings identify an E-cadherin-mediated pathway that translates cell contacts into cortical polarity by directly recruiting a symmetry-breaking factor to the adjacent cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: pac-1 structure–function analysis.
Figure 2: HMR-1–GFP localization in chimaeric embryos.
Figure 3: The role of catenins in PAC-1N localization.
Figure 4: PICC-1 localization and role in PAC-1N localization.
Figure 5: PICC-1 physical interactions with PAC-1 and JAC-1.
Figure 6: HMR-1 sufficiency in PAC-1 recruitment and cell polarization.
Figure 7: Model for HMR-1-instructed cell polarization.

Similar content being viewed by others

References

  1. Roignot, J., Peng, X. & Mostov, K. Polarity in mammalian epithelial morphogenesis. Cold Spring Harb. Perspect. Biol. 5, a013789 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. St Johnston, D. & Ahringer, J. Cell polarity in eggs and epithelia: parallels and diversity. Cell 141, 757–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Johnson, M. H. From mouse egg to mouse embryo: polarities, axes, and tissues. Annu. Rev. Cell Dev. Biol. 25, 483–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Nelson, W. J., Dickinson, D. J. & Weis, W. I. Roles of cadherins and catenins in cell–cell adhesion and epithelial cell polarity. Prog. Mol. Biol. Transl. Sci. 116, 3–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, J. & Zhang, M. The Par3/Par6/aPKC complex and epithelial cell polarity. Exp. Cell Res. 319, 1357–1364 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Nance, J. & Zallen, J. A. Elaborating polarity: PAR proteins and the cytoskeleton. Development 138, 799–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adams, C. L., Nelson, W. J. & Smith, S. J. Quantitative analysis of cadherin-catenin-actin reorganization during development of cell–cell adhesion. J. Cell Biol. 135, 1899–1911 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Adams, C. L., Chen, Y. T., Smith, S. J. & Nelson, W. J. Mechanisms of epithelial cell–cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J. Cell Biol. 142, 1105–1119 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100, 209–219 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Nejsum, L. N. & Nelson, W. J. A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity. J. Cell Biol. 178, 323–335 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson, M. H., Maro, B. & Takeichi, M. The role of cell adhesion in the synchronization and orientation of polarization in 8-cell mouse blastomeres. J. Embryol. Exp. Morphol. 93, 239–255 (1986).

    CAS  PubMed  Google Scholar 

  12. Gumbiner, B., Stevenson, B. & Grimaldi, A. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J. Cell Biol. 107, 1575–1587 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. McNeill, H., Ozawa, M., Kemler, R. & Nelson, W. J. Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62, 309–316 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Watabe, M., Nagafuchi, A., Tsukita, S. & Takeichi, M. Induction of polarized cell–cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line. J. Cell Biol. 127, 247–256 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Capaldo, C. T. & Macara, I. G. Depletion of E-cadherin disrupts establishment but not maintenance of cell junctions in Madin-Darby canine kidney epithelial cells. Mol. Biol. Cell 18, 189–200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stephenson, R. O., Yamanaka, Y. & Rossant, J. Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development 137, 3383–3391 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Nejsum, L. N. & Nelson, W. J. Epithelial cell surface polarity: the early steps. Front. Biosci. 14, 1088–1098 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  18. Yeaman, C., Grindstaff, K. K. & Nelson, W. J. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J. Cell Sci. 117, 559–570 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Harris, T. J. & Peifer, M. Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila. J. Cell Biol. 167, 135–147 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Le Bivic, A. E-cadherin-mediated adhesion is not the founding event of epithelial cell polarity in Drosophila. Trends Cell Biol. 15, 237–240 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Costa, M. et al. A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J. Cell Biol. 141, 297–308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tanentzapf, G., Smith, C., McGlade, J. & Tepass, U. Apical, lateral, and basal polarization cues contribute to the development of the follicular epithelium during Drosophila oogenesis. J. Cell Biol. 151, 891–904 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Theard, D., Steiner, M., Kalicharan, D., Hoekstra, D. & van Ijzendoorn, S. C. Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/β-catenin-based adherens junctions. Mol. Biol. Cell 18, 2313–2321 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nance, J. & Priess, J. R. Cell polarity and gastrulation in C. elegans. Development 129, 387–397 (2002).

    CAS  PubMed  Google Scholar 

  25. Nance, J., Munro, E. M. & Priess, J. R. C. elegans PAR-3 and PAR-6 are required for apicobasal asymmetries associated with cell adhesion and gastrulation. Development 130, 5339–5350 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Vinot, S. et al. Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction. Dev. Biol. 282, 307–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Thomas, F. C. et al. Contribution of JAM-1 to epithelial differentiation and tight-junction biogenesis in the mouse preimplantation embryo. J. Cell Sci. 117, 5599–5608 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Plusa, B. et al. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J. Cell Sci. 118, 505–515 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Anderson, D. C., Gill, J. S., Cinalli, R. M. & Nance, J. Polarization of the C. elegans embryo by RhoGAP-mediated exclusion of PAR-6 from cell contacts. Science 320, 1771–1774 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grana, T. M., Cox, E. A., Lynch, A. M. & Hardin, J. SAX-7/L1CAM and HMR-1/cadherin function redundantly in blastomere compaction and non-muscle myosin accumulation during Caenorhabditis elegans gastrulation. Dev. Biol. 344, 731–744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hirano, S., Nose, A., Hatta, K., Kawakami, A. & Takeichi, M. Calcium-dependent cell–cell adhesion molecules (cadherins): subclass specificities and possible involvement of actin bundles. J. Cell Biol. 105, 2501–2510 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Chihara, D. & Nance, J. An E-cadherin-mediated hitchhiking mechanism for C. elegans germ cell internalization during gastrulation. Development 139, 2547–2556 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Korswagen, H. C., Herman, M. A. & Clevers, H. C. Distinct β-catenins mediate adhesion and signalling functions in C. elegans. Nature 406, 527–532 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Pettitt, J., Cox, E. A., Broadbent, I. D., Flett, A. & Hardin, J. The Caenorhabditis elegans p120 catenin homologue, JAC-1, modulates cadherin-catenin function during epidermal morphogenesis. J. Cell Biol. 162, 15–22 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Daniel, J. M. & Reynolds, A. B. The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or α-catenin. Mol. Cell. Biol. 15, 4819–4824 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Markham, N. O. et al. Monoclonal antibodies to DIPA: a novel binding partner of p120-catenin isoform 1. Hybridoma 31, 246–254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Markham, N. O. et al. DIPA-family coiled-coils bind conserved isoform-specific head domain of p120-catenin family: potential roles in hydrocephalus and heterotopia. Mol. Biol. Cell 25, 2592–2603 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Audhya, A. et al. A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans. J. Cell Biol. 171, 267–279 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chan, E. & Nance, J. Mechanisms of CDC-42 activation during contact-induced cell polarization. J. Cell Sci. 126, 1692–1702 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stepniak, E., Radice, G. L. & Vasioukhin, V. Adhesive and signaling functions of cadherins and catenins in vertebrate development. Cold Spring Harb. Perspect. Biol. 1, a002949 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cardellini, P., Davanzo, G. & Citi, S. Tight junctions in early amphibian development: detection of junctional cingulin from the 2-cell stage and its localization at the boundary of distinct membrane domains in dividing blastomeres in low calcium. Dev. Dyn. 207, 104–113 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Muller, H. A. & Hausen, P. Epithelial cell polarity in early Xenopus development. Dev. Dyn. 202, 405–420 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Fesenko, I. et al. Tight junction biogenesis in the early Xenopus embryo. Mech. Dev. 96, 51–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Baas, A. F. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116, 457–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Sousa, S. et al. ARHGAP10 is necessary for α-catenin recruitment at adherens junctions and for Listeria invasion. Nat. Cell Biol. 7, 954–960 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Van Itallie, C. M. et al. Biotin ligase tagging identifies proteins proximal to E-cadherin, including lipoma preferred partner, a regulator of epithelial cell–cell and cell-substrate adhesion. J. Cell Sci. 127, 885–895 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mori, N. et al. Ccdc85c encoding a protein at apical junctions of radial glia is disrupted in hemorrhagic hydrocephalus (hhy) mice. Am. J. Pathol. 180, 314–327 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Frokjaer-Jensen, C. et al. Targeted gene deletions in C. elegans using transposon excision. Nat. Methods 7, 451–453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Warming, S., Costantino, N., Court, D. L., Jenkins, N. A. & Copeland, N. G. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 33, e36 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sarov, M. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3, 839–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, Y., Nash, L. & Fisher, A. L. A simplified, robust, and streamlined procedure for the production of C. elegans transgenes via recombineering. BMC Dev. Biol. 8, 119 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. D’Agostino, I., Merritt, C., Chen, P. L., Seydoux, G. & Subramaniam, K. Translational repression restricts expression of the C. elegans Nanos homolog NOS-2 to the embryonic germline. Dev. Biol. 292, 244–252 (2006).

    Article  PubMed  Google Scholar 

  53. Sarov, M. et al. A genome-scale resource for in vivo tag-based protein function exploration in C. elegans. Cell 150, 855–866 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2, RESEARCH0002 (2001).

    CAS  PubMed  Google Scholar 

  57. Totong, R., Achilleos, A. & Nance, J. PAR-6 is required for junction formation but not apicobasal polarization in C. elegans embryonic epithelial cells. Development 134, 1259–1268 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Schonegg, S. & Hyman, A. A. CDC-42 and RHO-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. Development 133, 3507–3516 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Hadwiger, G., Dour, S., Arur, S., Fox, P. & Nonet, M. L. A monoclonal antibody toolkit for C. elegans. PLoS ONE 5, e10161 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shelton, C. A. & Bowerman, B. Time-dependent responses to glp-1-mediated inductions in early C. elegans embryos. Development 122, 2043–2050 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Fisher (University of Pittsburgh, USA), K. Gieseler (Université Claude Bernard Lyon 1, France), G. Hermann (Lewis and Clark College, USA), O. Hobert (Columbia University Medical Center, USA), J. Hubbard (New York University School of Medicine, USA), T. Hyman (Max Planck Institute for Molecular Cell Biology and Genetics, Germany) and E. Jorgensen (University of Utah, USA) for their generous gifts of strains, plasmids or antibodies. Special thanks to M. Burel for help in examining GFP–PAC-1ΔPH localization. Thanks to L. Christiaen, T. Hurd, and members of the Nance laboratory for comments on the manuscript. This study was financially supported by a National Science Foundation Graduate Research Fellowship under grant No. 12-A0-00-000165-01 (D.K.), an American Heart Association postdoctoral fellowship (Y.Z.), and NIH grants R01GM098492 (J.N.), R01GM078341 (J.N.) and T32HD007520 (D.C.A.).

Author information

Authors and Affiliations

Authors

Contributions

D.K., D.C.A. and J.N. designed, executed and analysed the experiments. J.Y.Y., Y.Z. and J.N. designed, executed and analysed the co-immunoprecipitation experiments. D.K. and J.N. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Jeremy Nance.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 3 GFP-PAC-1 transgene expression levels and controls for GFP-PAC-1N localization in the absence of endogenous PAC-1.

(a) Expression levels of GFP-PAC-1 transgenes and derivatives, measured by fluorescence intensity (after background subtraction) at the four-cell stage (see Methods), expressed in arbitrary fluorescence units. PAC-1 amino acids present in each GFP fusion protein are indicated (ΔPH lacks the PH domain only). The box represents first and third quartiles, bars represent maximum and minimum values, and the line within the box is the mean fluorescence intensity (full length n = 11 embryos, ΔPH n = 13, 392-838 n = 11, 575-1604 n = 13, 2-610 n = 12, 1-574 n = 14). While expression levels vary between transgenes, contact localization is evident even from those with the lowest expression levels (ex. full-length GFP-PAC-1 and GFP-PAC-12–610). Therefore, lack of apparent contact localization for GFP-PAC-1392–838 and GFP-PAC-1575–1604 is not due to low expression level. (b) Full-length GFP-PAC-1 in control (empty vector) RNAi embryos localizes to cell contacts (arrow, 20/20 embryos). (c) In pac-1(3′ RNAi) embryos GFP-PAC-1 is not detected (19/19 embryos), indicating that RNAi effectively depletes PAC-1. Scale bars, 10 μm.

Supplementary Figure 4 Rescue of pac-1 polarity defects by GFP-PAC-1ΔPH.

(a) Wild-type, (b) pac-1(xn6), and (c) pac-1(xn6); GFP-PAC-1ΔPH 6–8 cell embryos stained for PAR-6. (d) PAR-6 asymmetry is lost in pac-1 mutants but is rescued by expression of GFP-PAC-1ΔPH. PAR-6 asymmetry was quantified by determining the polarity index, defined as the ratio of PAR-6 levels at contact-free surfaces versus half of the PAR-6 level at cell contacts (see Methods). Circles represent individual data points and the gray line indicates the average (wild type n = 8 embryos, pac-1 n = 10, pac-1; GFP-PAC-1ΔPHn = 8). Measured by Mann–Whitney U-test, pac-1(xn6) embryos have a polarity index significantly lower than wild type (p < 0.001) and pac-1(xn6); GFP-PAC-1ΔPH (p < 0.001). The polarity index of pac-1(xn6); GFP-PAC-1ΔPH is marginally significantly different from wild type (p < 0.05). Samples were pooled from two independent experiments. Scale bars, 10 μm.

Supplementary Figure 5 Comparison of GFP-PAC-1N in hmp-2(RNAi) and hmp-1(RNAi) embryos.

(ac) GFP-PAC-1N in live embryos of the indicated genotype; images were captured at the same exposure. (d) Quantification of GFP-PAC-1N contact enrichment. Circles represent data points from individual embryos, and the average is a gray line. p < 0.01; n.s. = not significantly different, Mann–Whitney U test. (Control n = 13 embryos, hmp-2(RNAi) n = 9, hmp-1(RNAi) n = 9). Scale bars, 10 μm.

Supplementary Figure 6 Genetic requirements for catenin localization.

Control embryos are wild-type embryos fed on bacteria containing empty RNAi vector. (a,b) HMP-1 immunostaining at cell contacts in control embryos (40/40 embryos) or in the cytoplasm of hmp-2(RNAi) embryos (35/35 embryos). (c,d) α-JAC-1 antiserum immunostains cell contacts in wild-type embryos (30/30 embryos) but not in jac-1(xn15) embryos (42/42 embryos). α-JAC-1 antiserum also stains nuclei non-specifically, as evidenced by the loss of contact staining, but not nuclear staining, in jac-1 mutant embryos (d). (e,f) GFP-JAC-1 at cell contacts in a live control embryo (41/41 embryos) and in the cytoplasm in a live hmr-1 embryo (25/25 embryos). (g) HMP-1 immunostaining in a hmp-1(RNAi) embryo. (h) HMP-1 immunostaining in a hmr-1 embryo, where HMP-1 localizes to the cytoplasm (45/45 embryos). (i) Schematic of the jac-1 gene, with exons shown as rectangles and introns as chevrons. Region encoding the Armadillo (Arm) repeats, which contains the peptide used to generate α-JAC-1 antiserum, is indicated. The dashed region indicates the extent of jac-1 deleted in the xn15 allele. Scale bars, 10 μm.

Supplementary Figure 7 Catenin and HMR-1 localization following catenin depletion.

Control embryos are wild-type embryos fed on bacteria containing RNAi empty vector. (a,b) HMP-1-GFP at cell contacts in wild-type and jac-1 embryos. (c) Quantification of HMP-1-GFP contact enrichment in wild-type and jac-1 embryos (wild type n = 12 embryos, jac-1 n = 12). Circles represent individual values and gray lines the mean. HMP-1-GFP levels at contacts in the two genotypes are not significantly different (p = 0.06, Mann–Whitney U test). (d,e) GFP-JAC-1 at cell contacts in a control and hmp-1(RNAi) embryo. (f) Quantification of GFP-JAC-1 contact enrichment in control and hmp-1(RNAi) embryos. (control n = 13 embryos, hmp-1(RNAi) n = 12). GFP-JAC-1 levels at contacts in the two genotypes are not significantly different (p = 0.3, Mann–Whitney U test). (gj) HMR-1-GFP expression in live four-cell embryos of the indicated genotype. (k) Quantification of HMR-1-GFP levels at cell contacts in embryos of the indicated genotype (control n = 18 embryos, hmp-1(RNAi) n = 33, jac-1 n = 17, jac-1 + hmp-1(RNAi)n = 17). None of the mean values are significantly different from control (p > 0.05, Mann–Whitney U test). Control samples and hmp-1(RNAi) embryos were pooled from two independent experiments. (l,m) Endogenous HMR-1 immunostaining at cell contacts in control (91/91 embryos) and jac-1(xn15) + hmp-1(RNAi) (133/133 embryos). Scale bars, 10 μm.

Supplementary Figure 8 picc-1 gene and regulation of PICC-1 localization.

(a) Schematic of the picc-1 gene, with exons shown as rectangles and introns as chevrons. The dashed region indicates portion of the picc-1 gene deleted in the xn14 allele. (b) Region of conservation between PICC-1 and homologues in human (CCDC85A-C; CCDC85B is also known as DIPA) and Drosophila (CG17265). Black shading indicates three or more identical residues; gray shading indicates similar residues. (c,d) GFP-PICC-1 localization in a hmr-1 mutant embryo (n = 50 embryos) and a hmp-1(RNAi) embryo (n = 31 embryos). Compare to wild-type localization in Figure 4a. Scale bars, 10 μm.

Supplementary Figure 9 Two-hybrid controls and reciprocal immunoprecipitations.

(a) Control two-hybrid experiments, performed as described in Figure 5 legend. (b) Immunoprecipitation of PICC-1-GFP from embryonic lysates showing co-immunoprecipitation of JAC-1 species. The experiment was performed seven times, and a representative example is shown. (c) Immunoprecipitation of mCherry-HA-PAC-1 from embryonic lysates showing co-immunoprecipitation of PICC-1-GFP. The experiment was performed four times, and a representative example is shown. Tubulin levels in the input (total embryonic lysate) are shown as a loading control. Uncropped blots are shown in Supplementary Figure 8.

Supplementary Table 1 Statistical comparisons of GFP-PAC-1N contact localization.
Supplementary Table 2 Primer list for transgene construction.

Supplementary information

Supplementary Information

Supplementary Information (PDF 690 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klompstra, D., Anderson, D., Yeh, J. et al. An instructive role for C. elegans E-cadherin in translating cell contact cues into cortical polarity. Nat Cell Biol 17, 726–735 (2015). https://doi.org/10.1038/ncb3168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing