Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The suture provides a niche for mesenchymal stem cells of craniofacial bones

Abstract

Bone tissue undergoes constant turnover supported by stem cells. Recent studies showed that perivascular mesenchymal stem cells (MSCs) contribute to the turnover of long bones. Craniofacial bones are flat bones derived from a different embryonic origin than the long bones. The identity and regulating niche for craniofacial-bone MSCs remain unknown. Here, we identify Gli1+ cells within the suture mesenchyme as the main MSC population for craniofacial bones. They are not associated with vasculature, give rise to all craniofacial bones in the adult and are activated during injury repair. Gli1+ cells are typical MSCs in vitro. Ablation of Gli1+ cells leads to craniosynostosis and arrest of skull growth, indicating that these cells are an indispensable stem cell population. Twist1+/− mice with craniosynostosis show reduced Gli1+ MSCs in sutures, suggesting that craniosynostosis may result from diminished suture stem cells. Our study indicates that craniofacial sutures provide a unique niche for MSCs for craniofacial bone homeostasis and repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gli1+ cells are restricted to the suture mesenchyme of craniofacial bones and are undifferentiated cells.
Figure 2: Gli1+ cells in the suture mesenchyme contribute to adult craniofacial bone turnover.
Figure 3: Gli1+ cells in the suture mesenchyme contribute to injury repair and support transplant growth.
Figure 4: Gli1+ cells are MSCs in vitro.
Figure 5: IHH secreted from the osteogenic front signals to Gli1+ cells in the suture mesenchyme and regulates osteogenic lineage differentiation.
Figure 6: Gli1+ cell ablation leads to craniosynostosis, skull growth arrest, osteoporosis and compromised injury repair.
Figure 7: Gli1+ cell numbers are significantly reduced in sutures of Twist1+/− mice.

Similar content being viewed by others

References

  1. Chai, Y. & Maxson, R. E. Jr Recent advances in craniofacial morphogenesis. Dev. Dyn. 235, 2353–2375 (2006).

    Article  PubMed  Google Scholar 

  2. Clark, B. R. & Keating, A. Biology of bone marrow stroma. Ann. NY Acad. Sci. 770, 70–78 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Riminucci, M., Remoli, C., Robey, P. G. & Bianco, P. Stem cells and bone diseases: New tools, new perspective. Bone 70C, 55–61 (2015).

    Article  Google Scholar 

  4. Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Worthley, D. L. et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160, 269–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grayson, W. L. et al. Stromal cells and stem cells in clinical bone regeneration. Nat. Rev. Endocrinol. 11, 140–150 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, M., Zhang, H. & Gangolli, R. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering. Curr. Stem Cell Res. Ther. 9, 150–161 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Robey, P. G. Cell sources for bone regeneration: the good, the bad, and the ugly (but promising). Tissue Eng. 17, 423–430 (2011).

    Article  CAS  Google Scholar 

  10. Lin, Z., Fateh, A., Salem, D. M. & Intini, G. Periosteum: biology and applications in craniofacial bone regeneration. J. Dent. Res. 93, 109–116 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ochareon, P. & Herring, S. W. Cell replication in craniofacial periosteum: appositional vs. resorptive sites. J. Anat. 218, 285–297 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pagni, G. et al. Bone repair cells for craniofacial regeneration. Adv. Drug Deliv. Rev. 64, 1310–1319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petrovic, V., Zivkovic, P., Petrovic, D. & Stefanovic, V. Craniofacial bone tissue engineering. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 114, e1–e9 (2012).

    Article  PubMed  Google Scholar 

  14. Badve, C. A., K, M. M., Iyer, R. S., Ishak, G. E. & Khanna, P. C. Craniosynostosis: imaging review and primer on computed tomography. Pediat. Radiol. 43, 728–742 (2013).

    Article  PubMed  Google Scholar 

  15. Senarath-Yapa, K. et al. Craniosynostosis: molecular pathways and future pharmacologic therapy. Organogenesis 8, 103–113 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Levi, B. et al. Cranial suture biology: from pathways to patient care. J. Craniofac. Surg. 23, 13–19 (2012).

    Article  PubMed  Google Scholar 

  17. Slater, B. J. et al. Cranial sutures: a brief review. Plast. Reconstr. Surg. 121, 170e–178e (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Lattanzi, W. et al. Genetic basis of single-suture synostoses: genes, chromosomes and clinical implications. Childs Nerv. Syst. 28, 1301–1310 (2012).

    Article  PubMed  Google Scholar 

  19. Ciurea, A. V. & Toader, C. Genetics of craniosynostosis: review of the literature. J. Med. Life 2, 5–17 (2009).

    PubMed  Google Scholar 

  20. Martou, G. & Antonyshyn, O. M. Advances in surgical approaches to the upper facial skeleton. Curr. Opin. Otolaryngol. Head Neck Surg. 19, 242–247 (2011).

    Article  PubMed  Google Scholar 

  21. Posnick, J. C., Tiwana, P. S. & Ruiz, R. L. Craniofacial dysostosis syndromes: evaluation and staged reconstructive approach. Atlas Oral Maxillofac. Surg. Clin. North Am. 18, 109–128 (2010).

    Article  PubMed  Google Scholar 

  22. Hankinson, T. C., Fontana, E. J., Anderson, R. C. & Feldstein, N. A. Surgical treatment of single-suture craniosynostosis: an argument for quantitative methods to evaluate cosmetic outcomes. J. Neurosurg. Pediatr. 6, 193–197 (2010).

    Article  PubMed  Google Scholar 

  23. Forrest, C. R. & Hopper, R. A. Craniofacial syndromes and surgery. Plast. Reconstr. Surg. 131, 86e–109e (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Tatum, S. A. & Losquadro, W. D. Advances in craniofacial surgery. Arch. Facial Plast. Surg. 10, 376–380 (2008).

    Article  PubMed  Google Scholar 

  25. Wan, D. C., Kwan, M. D., Lorenz, H. P. & Longaker, M. T. Current treatment of craniosynostosis and future therapeutic directions. Front. Oral Biol. 12, 209–230 (2008).

    Article  PubMed  Google Scholar 

  26. Zhao, H. et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 14, 160–173 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Behr, B., Longaker, M. T. & Quarto, N. Absence of endochondral ossification and craniosynostosis in posterior frontal cranial sutures of Axin2−/− mice. PLoS ONE 8, e70240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bajwa, M. et al. Normal fusion of the metopic suture. J. Craniofac. Surg. 24, 1201–1205 (2013).

    Article  PubMed  Google Scholar 

  29. Stotland, M. A., Do, N. K. & Knapik, T. J. Bregmatic wormian bone and metopic synostosis. J. Craniofac. Surg. 23, 2015–2018 (2012).

    PubMed  Google Scholar 

  30. Slater, B. J., Lenton, K. A., James, A. & Longaker, M. T. Ex vivo model of cranial suture morphogenesis and fate. Cells Tissues Organs 190, 336–346 (2009).

    Article  PubMed  Google Scholar 

  31. Xu, Y., Malladi, P., Chiou, M. & Longaker, M. T. Isolation and characterization of posterofrontal/sagittal suture mesenchymal cells in vitro. Plast. Reconstr. Surg. 119, 819–829 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Lenton, K. et al. Indian hedgehog positively regulates calvarial ossification and modulates bone morphogenetic protein signaling. Genesis 49, 784–796 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, E. J. et al. Ihh and Runx2/Runx3 signaling interact to coordinate early chondrogenesis: a mouse model. PLoS ONE 8, e55296 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh, B. N., Fu, J., Srivastava, R. K. & Shankar, S. Hedgehog signaling antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell characteristics: molecular mechanisms. PLoS ONE 6, e27306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grova, M. et al. Models of cranial suture biology. J. Craniofac. Surg. 23, 1954–1958 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Howard, T. D. et al. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre–Chotzen syndrome. Nat. Genet. 15, 36–41 (1997).

    Article  PubMed  Google Scholar 

  37. Behr, B., Longaker, M. T. & Quarto, N. Craniosynostosis of coronal suture in twist1 mice occurs through endochondral ossification recapitulating the physiological closure of posterior frontal suture. Front. Physiol. 2, 37–39 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jezela-Stanek, A. & Krajewska-Walasek, M. Genetic causes of syndromic craniosynostoses. Eur. J. Paediatr. Neurol. 17, 221–224 (2013).

    Article  PubMed  Google Scholar 

  39. Paznekas, W. A. et al. Genetic heterogeneity of Saethre–Chotzen syndrome, due to TWIST and FGFR mutations. Am. J. Hum. Genet. 62, 1370–1380 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. El Ghouzzi, V. et al. Mutations of the TWIST gene in the Saethre–Chotzen syndrome. Nat. Genet. 15, 42–46 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Rice, D. P. et al. Integration of FGF and TWIST in calvarial bone and suture development. Development 127, 1845–1855 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Bi, Y. et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat. Med. 13, 1219–1227 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Hogan, M. V. et al. Tissue engineering solutions for tendon repair. J. Am. Acad. Orthop. Surg. 19, 134–142 (2011).

    Article  PubMed  Google Scholar 

  44. Seidel, K. et al. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development 137, 3753–3761 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pan, A., Chang, L., Nguyen, A. & James, A. W. A review of hedgehog signaling in cranial bone development. Front. Physiol. 4, 61–64 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yousfi, M., Lasmoles, F., El Ghouzzi, V. & Marie, P. J. Twist haploinsufficiency in Saethre–Chotzen syndrome induces calvarial osteoblast apoptosis due to increased TNFα expression and caspase-2 activation. Hum. Mol. Genet. 11, 359–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Miraoui, H. & Marie, P. J. Pivotal role of Twist in skeletal biology and pathology. Gene 468, 1–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Bianco, P. Stem cells and bone: A historical perspective. Bone 70C, 2–9 (2015).

    Article  Google Scholar 

  49. Keating, A. Mesenchymal stromal cells: new directions. Cell Stem Cell 10, 709–716 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Tolar, J., Le Blanc, K., Keating, A. & Blazar, B. R. Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 28, 1446–1455 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Opperman, L. A., Sweeney, T. M., Redmon, J., Persing, J. A. & Ogle, R. C. Tissue interactions with underlying dura mater inhibit osseous obliteration of developing cranial sutures. Dev. Dyn. 198, 312–322 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Oka, K. et al. The role of TGF-β signaling in regulating chondrogenesis and osteogenesis during mandibular development. Dev. Biol. 303, 391–404 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. James, A. W., Xu, Y., Wang, R. & Longaker, M. T. Proliferation, osteogenic differentiation, and fgf-2 modulation of posterofrontal/sagittal suture-derived mesenchymal cells in vitro. Plast. Reconstr. Surg. 122, 53–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Chung, I. H. et al. Stem cell property of postmigratory cranial neural crest cells and their utility in alveolar bone regeneration and tooth development. Stem Cells 27, 866–877 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Harfe, B. D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118, 517–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Bai, C. B., Auerbach, W., Lee, J. S., Stephen, D. & Joyner, A. L. Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129, 4753–4761 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Ahn, S. & Joyner, A. L. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118, 505–516 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Voehringer, D., Liang, H. E. & Locksley, R. M. Homeostasis and effector function of lymphopenia-induced ”memory-like” T cells in constitutively T cell-depleted mice. J. Immunol. 180, 4742–4753 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Long, F., Zhang, X. M., Karp, S., Yang, Y. & McMahon, A. P. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 128, 5099–5108 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Hadjantonakis, A. K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev. 76, 79–90 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Mayo and B. Samuels for critical reading of the manuscript and M. Zhang for the support. We thank R. Yang, X. Xu and S. Shi for technical support on the FACS analysis. We thank A. McMahon for providing Ihh–LacZ mice. H.Z. acknowledges training grant support from the National Institute of Dental and Craniofacial Research, NIH (R90 DE022528). This study was supported by grants from the National Institute of Dental and Craniofacial Research, NIH (DE022503, DE020065 and DE012711) to Y.C.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. and Y.C. designed the study. H.Z. carried out most of the experiments and analysed the data. J.F. participated in the suture cell culture experiments. T-V.H. and W.G. participated in the microCT analysis. M.U. provided comments. H.Z. and Y.C. co-wrote the paper. Y.C. supervised the research.

Corresponding author

Correspondence to Yang Chai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Anatomy and histology of craniofacial sutures.

(ac) MicroCT images of one-month-old wild type mice. Each craniofacial bone is labelled with a different color. (df) HE staining of the sagittal suture (d), parietal bone (e) and coronal suture (f). Dotted lines outline the calvarial bones. (g) Schematic drawing of suture organization. Scale bars in panels a-c, 1 mm; other scale bars, 100 μm.

Supplementary Figure 2 Gli1+ cells are detectable in the mesenchyme of most craniofacial sutures.

(am) LacZ staining of craniofacial sutures of one-month-old Gli1-LacZ mice. Gli1+ cells are detectable in the mid-suture mesenchyme of the lambdoid (a), interparietal-occipital (b), parietal-squamous (c), maxilla-zygomatic (d), squamous-zygomatic (e), maxilla-premaxilla (f), frontal-maxilla (g), frontal-squamous (h), frontal-premaxilla (i), nasal-frontal (j), intermaxilla (k), basosphenoid-squamous (l) and basosphenoid-frontal (m) sutures. (no) Immunohistochemical staining of osteogenic differentiation markers Sp7 or Runx2 and lacZ staining (βGal) of craniofacial sutures of one-month-old Gli1-LacZ mice. Arrows indicate positive Sp7 or Runx2 signal. (p) Whole mount LacZ staining of the posterior frontal suture of 8-day-old (P8) Gli1-LacZ pups. The two panels on the right (pa′, p-b′) are sections of the posterior frontal and sagittal sutures and their positions are shown with the arrow and arrowhead. Asterisks indicate the suture mesenchyme. Dotted lines outline the bone surface. (q) LacZ staining of the posterior frontal suture of one-month-old Gli1-LacZ mice. Scale bar in panel p, 1 mm; other scale bars, 100 μm.

Supplementary Figure 3 Lineage tracing of Gli1+ cells in adult craniofacial sutures.

Fluorescence imaging of sutures in Gli1-CreERT2;R26tdTomatofl mice one week (an) and one month (a′-o′) after induction at 1 month of age. Sutures visualized include the lambdoid (a,a′), interparietal-occipital (b,b′), parietal-squamous (c,c′), maxilla-zygomatic (d,d′), squamous-zygomatic (e,e′), maxilla-premaxilla (f,f′), frontal-maxilla (g,g′), frontal-squamous (h,h′), frontal-premaxilla (i,i′), nasal-frontal (j,j′), intermaxilla (k,k′), basosphenoid-squamous (l,l′) and basosphenoid-frontal (m,m′). (n,n′,o′) Immunostaining of Sp7 or Runx2 in the osteogenic front of Gli1-CreERT2;R26tdTomatofl mice. Arrowheads indicate Sp7+ or Runx2+ cells in the osteogenic front. Dotted lines outline the bone surfaces. Scale bars, 100 μm.

Supplementary Figure 4 Gli1+ cells in the craniofacial bone marrow also contribute to bone formation.

(a) LacZ staining of the parietal bone of one-month-old Gli1-LacZ mice. Arrows indicate positive signal. (b) Percentage of suture Gli1+ cells in the parietal, frontal, occipital, maxillary, palatal, basosphenoid and squamous bones of one-month-old Gli1-LacZ mice. Values are plotted as mean, n = 5 samples. (cd) Visualization of Gli1+ cells in Gli1-CreERT2;R26tdTomatofl mice induced at 1 month of age. Gli1+ cells are detectable in the marrow space of the basosphenoid bone (arrows in c). One month after induction, osteocytes close to the bone marrow space are also labelled (arrows in d), although blood cells in the bone marrow are not. Scale bars, 100 μm.

Supplementary Figure 5 Phenotypes of Smo ICKO and DTA mice.

(ah) MicroCT images of incisors of Smoothenedflox/flox (control) and Gli1-CreERT2;Smoothenedflox/flox (Smo ICKO) mice induced at one month of age and analysed two months later. Arrows indicate normal calcified tissue and arrowheads indicate disrupted calcified tissue in sagittal (b,f) and cross (c,d,g,h) sections. (il) HE staining of incisors in control (i,k) and Smo ICKO (j,l) mice. Normal and disrupted enamel and dentin formation are indicated by the arrow and arrowhead, respectively. Asterisks indicate periodontal tissue defects. (mo) EdU incorporation and TUNEL assays in the incisors and sagittal sutures of control and Smo ICKO mice induced at one month of age and analysed one month later. (n) Quantification of the relative numbers of EdU+ cells. Values are plotted as mean ± s.e.m. Student’s t-test was performed. n = 4 mouse samples. (p) Lineage tracing analysis in the sagittal suture, parietal bone and palatal suture of Gli1-CreERT2;Smofl/fl;R26ZsGreenfl mice induced at one month of age and analysed two months later. (qx) LacZ and Alizarin Red staining of MSCs from the suture mesenchyme of one-month-old Gli1-LacZ mice, either untreated (ctrl) or treated with IHH or GDC0449. (t) Quantitation of Edu incorporation and TUNEL assays of the same MSC cultures. Values are plotted as mean ± s.e.m. and Student’s t-test was performed. n = 4 culture wells. (x) Real-time PCR of osteogenic differentiation markers including ALPase, Runx2, Sp7 and Osteocalcin of the same MSC cultures. , ANOVA was performed and P values were indicated in the figure, n = 4 samples. (yz) Gli1-CreERT2;R26DTAfl/fl;R26ZsGreenfl and control (Ctrl) mice were induced at one month of age and analysed two months later. Fluorescently labelled cells in the fused sagittal and coronal sutures indicate cell ablation is not 100% efficient. Dotted lines outline the dental epithelium or bone. Scale bars in panels a-h, 1 mm; scale bar in panel y, 1 cm; other scale bars, 100 μm.

Supplementary Figure 6 The suture mesenchyme provides an MSC niche for adult craniofacial bones.

(a) Gli1+ MSCs within the suture mesenchyme give rise to the osteogenic front, periosteum and dura. These MSCs also give rise to the osteocytes either directly in the osteogenic front region or indirectly through the periosteum or dura. (b) IHH secreted from the osteogenic front regulates the differentiation of Gli1+ MSCs in the suture mesenchyme.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1416 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Feng, J., Ho, TV. et al. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol 17, 386–396 (2015). https://doi.org/10.1038/ncb3139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing