Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

In vivo reprogramming for tissue repair

Abstract

Vital organs such as the pancreas and the brain lack the capacity for effective regeneration. To overcome this limitation, an emerging strategy consists of converting resident tissue-specific cells into the cell types that are lost due to disease by a process called in vivo lineage reprogramming. Here we discuss recent breakthroughs in regenerating pancreatic β-cells and neurons from various cell types, and highlight fundamental challenges that need to be overcome for the translation of in vivo lineage reprogramming into therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of in vivo lineage reprogramming in the pancreas.
Figure 2: Examples of in vivo lineage reprogramming in the brain.

Similar content being viewed by others

References

  1. Bryder, D., Rossi, D. J. & Weissman, I. L. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am. J. Pathol. 169, 338–346 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cohen, D. E. & Melton, D. Turning straw into gold: directing cell fate for regenerative medicine. Nat. Rev. Genet. 12, 243–252 (2011).

    CAS  PubMed  Google Scholar 

  3. Amamoto, R. & Arlotta, P. Development-inspired reprogramming of the mammalian central nervous system. Science 343, 1239882 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Sanchez Alvarado, A. & Yamanaka, S. Rethinking differentiation: stem cells, regeneration, and plasticity. Cell 157, 110–119 (2014).

    CAS  PubMed  Google Scholar 

  5. Vierbuchen, T. & Wernig, M. Direct lineage conversions: unnatural but useful? Nat. Biotechnol. 29, 892–907 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Song, K. et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485, 599–604 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Eulalio, A. et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376–381 (2012).

    CAS  PubMed  Google Scholar 

  9. Hu, Y. F., Dawkins, J. F., Cho, H. C., Marban, E. & Cingolani, E. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci. Transl. Med. 6, 245ra294 (2014).

    Google Scholar 

  10. Kapoor, N., Liang, W., Marban, E. & Cho, H.C. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 31, 54–62 (2013).

    CAS  PubMed  Google Scholar 

  11. Muraoka, N. & Ieda, M. Direct reprogramming of fibroblasts into myocytes to reverse fibrosis. Annu. Rev. Physiol. 76, 21–37 (2014).

    CAS  PubMed  Google Scholar 

  12. Zhou, Q. & Melton, D. A. Extreme makeover: converting one cell into another. Cell Stem Cell 3, 382–388 (2008).

    CAS  PubMed  Google Scholar 

  13. Halley-Stott, R. P., Jullien, J., Pasque, V. & Gurdon, J. Mitosis gives a brief window of opportunity for a change in gene transcription. PLoS Biol. 12, e1001914 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Barker, R.A., Barrett, J., Mason, S.L. & Bjorklund, A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson's disease. Lancet Neurol. 12, 84–91 (2013).

    CAS  PubMed  Google Scholar 

  15. Gage, F. H. & Temple, S. Neural stem cells: generating and regenerating the brain. Neuron 80, 588–601 (2013).

    CAS  PubMed  Google Scholar 

  16. Ashcroft, F. M. & Rorsman, P. Diabetes mellitus and the β cell: the last ten years. Cell 148, 1160–1171 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, Y. P., Thorel, F., Boyer, D. F., Herrera, P. L. & Wright, C. V. Context-specific α-to-β-cell reprogramming by forced Pdx1 expression. Genes Dev. 25, 1680–1685 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455, 627–632 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. D'Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401 (2006).

    CAS  PubMed  Google Scholar 

  21. Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    CAS  PubMed  Google Scholar 

  23. Puri, S. & Hebrok, M. Cellular plasticity within the pancreas — lessons learned from development. Dev. Cell 18, 342–356 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Herrera, P. L. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127, 2317–2322 (2000).

    CAS  PubMed  Google Scholar 

  25. Bonal, C. & Herrera, P. L. Genes controlling pancreas ontogeny. Int. J. Dev. Biol. 52, 823–835 (2008).

    CAS  PubMed  Google Scholar 

  26. Chera, S. et al. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature 514, 503–507 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Thorel, F. et al. Normal glucagon signaling and β-cell function after near-total α-cell ablation in adult mice. Diabetes 60, 2872–2882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Habener, J. F. & Stanojevic, V. α cells come of age. Trends Endocrinol. Metab. 24, 153–163 (2013).

    CAS  PubMed  Google Scholar 

  29. Al-Hasani, K. et al. Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes. Dev. Cell 26, 86–100 (2013).

    CAS  PubMed  Google Scholar 

  30. Collombat, P. et al. Embryonic endocrine pancreas and mature β cells acquire α and PP cell phenotypes upon Arx misexpression. J. Clin. Invest. 117, 961–970 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Courtney, M. et al. The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells. PLoS Genet. 9, e1003934 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. Bramswig, N. C. et al. Epigenomic plasticity enables human pancreatic α to β cell reprogramming. J. Clin. Invest. 123, 1275–1284 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pan, F. C. et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 140, 751–764 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, W. et al. In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes. eLife 3, e01846 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Baeyens, L. et al. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nat. Biotechnol. 32, 76–83 (2014).

    CAS  PubMed  Google Scholar 

  36. Bonner-Weir, S. et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl Acad. Sci. USA 97, 7999–8004 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, J. et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. eLife 2, e00940 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Criscimanna, A. et al. Duct cells contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice. Gastroenterology 141, 1451–1462 (2011).

    CAS  PubMed  Google Scholar 

  39. Sancho, R., Gruber, R., Gu, G. & Behrens, A. Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ and β cells. Cell Stem Cell 15, 139–153 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zaret, K. S. & Grompe, M. Generation and regeneration of cells of the liver and pancreas. Science 322, 1490–1494 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Horb, M. E., Shen, C. N., Tosh, D. & Slack, J. M. Experimental conversion of liver to pancreas. Curr. Biol. 13, 105–115 (2003).

    CAS  PubMed  Google Scholar 

  42. Nagaya, M., Katsuta, H., Kaneto, H., Bonner-Weir, S. & Weir, G. C. Adult mouse intrahepatic biliary epithelial cells induced in vitro to become insulin-producing cells. J. Endocrinol. 201, 37–47 (2009).

    CAS  PubMed  Google Scholar 

  43. Hickey, R. D. et al. Generation of islet-like cells from mouse gall bladder by direct ex vivo reprogramming. Stem Cell Res. 11, 503–515 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, Y. J. et al. De novo formation of insulin-producing “neo-β cell islets” from intestinal crypts. Cell Rep. 6, 1046–1058 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Talchai, C., Xuan, S., Kitamura, T., DePinho, R. A. & Accili, D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat. Genet. 44, 406–412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schonhoff, S. E., Giel-Moloney, M. & Leiter, A. B. Neurogenin 3-expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non-endocrine cell types. Dev. Biol. 270, 443–454 (2004).

    CAS  PubMed  Google Scholar 

  47. Ferber, S. et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. 6, 568–572 (2000).

    CAS  PubMed  Google Scholar 

  48. Yechoor, V. et al. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev. Cell 16, 358–373 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kojima, H. et al. NeuroD-β cellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat. Med. 9, 596–603 (2003).

    CAS  PubMed  Google Scholar 

  50. Banga, A., Akinci, E., Greder, L. V., Dutton, J. R. & Slack, J. M. In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts. Proc. Natl Acad. Sci. USA 109, 15336–15341 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, A. Y., Ehrhardt, A., Xu, H. & Kay, M. A. Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol. Ther. 15, 255–263 (2007).

    CAS  PubMed  Google Scholar 

  52. Miyatsuka, T. et al. Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem. Biophys. Res. Commun. 310, 1017–1025 (2003).

    CAS  PubMed  Google Scholar 

  53. Rodriguez-Seguel, E. et al. Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence. Genes Dev. 27, 1932–1946 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lindvall, O., Barker, R.A., Brustle, O., Isacson, O. & Svendsen, C. N. Clinical translation of stem cells in neurodegenerative disorders. Cell Stem Cell 10, 151–155 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gaillard, A. & Jaber, M. Rewiring the brain with cell transplantation in Parkinson's disease. Trends Neurosci. 34, 124–133 (2011).

    CAS  PubMed  Google Scholar 

  56. Benraiss, A. et al. Sustained mobilization of endogenous neural progenitors delays disease progression in a transgenic model of Huntington's disease. Cell Stem Cell 12, 787–799 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Saghatelyan, A., de Chevigny, A., Schachner, M. & Lledo, P. M. Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain. Nat. Neurosci. 7, 347–356 (2004).

    CAS  PubMed  Google Scholar 

  58. Heins, N. et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5, 308–315 (2002).

    CAS  PubMed  Google Scholar 

  59. Berninger, B. et al. Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J. Neurosci. 27, 8654–8664 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Heinrich, C. et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol. 8, e1000373 (2010).

    PubMed  PubMed Central  Google Scholar 

  61. Heinrich, C. et al. Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex. Nat. Protoc. 6, 214–228 (2011).

    CAS  PubMed  Google Scholar 

  62. Karow, M. et al. Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11, 471–476 (2012).

    CAS  PubMed  Google Scholar 

  63. Guo, Z. et al. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model. Cell Stem Cell 14, 188–202 (2014).

    CAS  PubMed  Google Scholar 

  64. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yoo, A. S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Caiazzo, M. et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224–227 (2011).

    CAS  PubMed  Google Scholar 

  67. Pfisterer, U. et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Natl Acad. Sci. USA 108, 10343–10348 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Son, E. Y. et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9, 205–218 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Victor, M. B. et al. Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 84, 311–323 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wapinski, O. L. et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155, 621–635 (2013).

    CAS  PubMed  Google Scholar 

  71. Chanda, S., Marro, S., Wernig, M. & Sudhof, T. C. Neurons generated by direct conversion of fibroblasts reproduce synaptic phenotype caused by autism-associated neuroligin-3 mutation. Proc. Natl Acad. Sci. USA 110, 16622–16627 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wainger, B. J. et al. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat. Neurosci. 18, 17–24 (2015).

    CAS  PubMed  Google Scholar 

  73. Dell'Anno, M. T. et al. Remote control of induced dopaminergic neurons in parkinsonian rats. J. Clin. Invest. 124, 3215–3229 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Buffo, A. et al. Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc. Natl Acad. Sci. USA 102, 18183–18188 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Torper, O. et al. Generation of induced neurons via direct conversion in vivo. Proc. Natl Acad. Sci. USA 110, 7038–7043 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Niu, W. et al. In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat. Cell Biol. 15, 1164–1175 (2013).

    CAS  PubMed  Google Scholar 

  77. Robel, S., Berninger, B. & Gotz, M. The stem cell potential of glia: lessons from reactive gliosis. Nat. Rev. Neurosci. 12, 88–104 (2011).

    CAS  PubMed  Google Scholar 

  78. Sirko, S. et al. Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog glia. Cell Stem Cell 12, 426–439 (2013).

    CAS  PubMed  Google Scholar 

  79. Magnusson, J. P. et al. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science 346, 237–241 (2014).

    CAS  PubMed  Google Scholar 

  80. Bardehle, S. et al. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat. Neurosci. 16, 580–586 (2013).

    CAS  PubMed  Google Scholar 

  81. Grande, A. et al. Environmental impact on direct neuronal reprogramming in vivo in the adult brain. Nat. Commun. 4, 2373 (2013).

    PubMed  Google Scholar 

  82. Heinrich, C. et al. Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Reports 3, 1000–1014 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hughes, E. G., Kang, S. H., Fukaya, M. & Bergles, D. E. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16, 668–676 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Su, Z., Niu, W., Liu, M. L., Zou, Y. & Zhang, C. L. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat. Commun. 5, 3338 (2014).

    PubMed  Google Scholar 

  85. Goritz, C. et al. A pericyte origin of spinal cord scar tissue. Science 333, 238–242 (2011).

    PubMed  Google Scholar 

  86. Rouaux, C. & Arlotta, P. Fezf2 directs the differentiation of corticofugal neurons from striatal progenitors in vivo. Nat. Neurosci. 13, 1345–1347 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rouaux, C. & Arlotta, P. Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo. Nat. Cell Biol. 15, 214–221 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. De la Rossa, A. et al. In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nat. Neurosci. 16, 193–200 (2013).

    CAS  PubMed  Google Scholar 

  89. Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    PubMed  Google Scholar 

  90. Mercer, D. F. et al. Hepatitis C virus replication in mice with chimeric human livers. Nat. Med. 7, 927–933 (2001).

    CAS  PubMed  Google Scholar 

  91. Flynn, R. A. & Chang, H. Y. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14, 752–761 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tursun, B., Patel, T., Kratsios, P. & Hobert, O. Direct conversion of C. elegans germ cells into specific neuron types. Science 331, 304–308 (2011).

    CAS  PubMed  Google Scholar 

  93. Patel, T., Tursun, B., Rahe, D.P. & Hobert, O. Removal of Polycomb repressive complex 2 makes C. elegans germ cells susceptible to direct conversion into specific somatic cell types. Cell Rep 2, 1178–1186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zuryn, S. et al. Transdifferentiation: sequential histone-modifying activities determine the robustness of transdifferentiation. Science 345, 826–829 (2014).

    CAS  PubMed  Google Scholar 

  95. Wang, Y. et al. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol. Ther. 21, 358–367 (2013).

    CAS  PubMed  Google Scholar 

  96. Ridder, K. et al. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol. 12, e1001874 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    CAS  PubMed  Google Scholar 

  98. Byrne, L. C. et al. Retinoschisin gene therapy in photoreceptors, Muller glia or all retinal cells in the Rs1h−/− mouse. Gene Ther. 21, 585–592 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lodato, S. et al. Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nat. Neurosci. 17, 1046–1054 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wagers, A. J. & Weissman, I. L. Plasticity of adult stem cells. Cell 116, 639–648 (2004).

    CAS  PubMed  Google Scholar 

  101. Hester, M. S. & Danzer, S. C. Accumulation of abnormal adult-generated hippocampal granule cells predicts seizure frequency and severity. J. Neurosci. 33, 8926–8936 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lindvall, O. Developing dopaminergic cell therapy for Parkinson's disease--give up or move forward? Mov. Disord. 28, 268–273 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our apologies go to all authors whose important work could not be mentioned due to space limitations. We are grateful to Célia Lentini for her help with the design of the figures and Marisa Karow for critically commenting on the manuscript. C.H. is supported by CNRS and Citizens United for Research in Epilepsy (CURE). F.M.S. is supported by the Helmholtz Association, ERC-St. Grant HEPATOPANCREATIC, and FP7 IRG-ENDOPANC. B.B. is supported by the DFG, BMBF, and the Bavarian research network Induced Pluripotent Stem Cells (ForIPS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesca M. Spagnoli or Benedikt Berninger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinrich, C., Spagnoli, F. & Berninger, B. In vivo reprogramming for tissue repair. Nat Cell Biol 17, 204–211 (2015). https://doi.org/10.1038/ncb3108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing