Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Solving the centriole disengagement puzzle

The microcephaly protein, Cep215, contributes to the engagement of duplicated centrioles in interphase. Now two distinct pools of Cep215 at centrosomes are identified, one bound to Cep68 and the other to pericentrin. Plk1-mediated degradation of Cep68 and separase-mediated cleavage of pericentrin release both pools of Cep215, thereby promoting centriole disengagement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cep215 has a dual role in centrosome cohesion.

References

  1. 1

    Ganem, N. J., Godinho, S. A. & Pellman, D. Nature 460, 278–282 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Godinho, S. A. et al. Nature 510, 167–171 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Marthiens, V. et al. Nat. Cell Biol. 15, 731–740 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Mardin, B. R. & Schiebel, E. J. Cell Biol. 197, 11–18 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Graser, S., Stierhof, Y. D. & Nigg, E. A. J. Cell Sci. 120, 4321–4331 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Pagan, J. et al. Nat. Cell Biol. 17, 31–43 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Mennella, V., Agard, D. A., Huang, B. & Pelletier, L. Trends Cell Biol. 24, 188–197 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Lee, K. & Rhee, K. Cell Cycle 11, 2476–2485 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Matsuo, K. et al. Curr. Biol. 22, 915–921 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Conduit, P. T. et al. eLife 3, e03399 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Firat-Karalar, E. N., Rauniyar, N., Yates, J. R. III & Stearns, T. Curr. Biol. 24, 664–670 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Barrera, J. A. et al. Dev. Cell 18, 913–926 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Cabral, G., Sans, S. S., Cowan, C. R. & Dammermann, A. Curr. Biol. 23, 1380–1387 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Tsou, M. F. et al. Dev. Cell 17, 344–354 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Lee, K. & Rhee, K. J. Cell Biol. 195, 1093–1101 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Conduit, P. T. et al. Dev. Cell 28, 659–669 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Fry.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fry, A. Solving the centriole disengagement puzzle. Nat Cell Biol 17, 3–5 (2015). https://doi.org/10.1038/ncb3087

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing