Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single luminal epithelial progenitors can generate prostate organoids in culture

Abstract

The intrinsic ability to exhibit self-organizing morphogenetic properties in ex vivo culture may represent a general property of tissue stem cells. Here we show that single luminal stem/progenitor cells can generate prostate organoids in a three-dimensional culture system in the absence of stroma. Organoids generated from CARNs (castration-resistant Nkx3.1-expressing cells) or normal prostate epithelia exhibit tissue architecture containing luminal and basal cells, undergo long-term expansion in culture and exhibit functional androgen receptor signalling. Lineage-tracing demonstrates that luminal cells are favoured for organoid formation and generate basal cells in culture. Furthermore, tumour organoids can initiate from CARNs after oncogenic transformation and from mouse models of prostate cancer, and can facilitate analyses of drug response. Finally, we provide evidence supporting the feasibility of organoid studies of human prostate tissue. Our studies underscore the progenitor properties of luminal cells, and identify in vitro approaches for studying prostate biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of prostate epithelial organoids from lineage-marked CARNs.
Figure 2: Growth and androgen-responsiveness of prostate organoids from normal prostate epithelium.
Figure 3: Lineage-tracing shows that luminal cells are favoured for generation of prostate organoids.
Figure 4: Tumour organoids can be generated from single transformed CARNs.
Figure 5: Modelling tumour phenotypes in organoid culture.
Figure 6: Modelling drug treatment response in organoid culture.

Similar content being viewed by others

References

  1. Peehl, D. M. Primary cell cultures as models of prostate cancer development. Endocr. Relat. Cancer 12, 19–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Shen, M. M. & Abate-Shen, C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes. Dev. 24, 1967–2000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grisanzio, C. & Signoretti, S. p63 in prostate biology and pathology. J. Cell. Biochem. 103, 1354–1368 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Humphrey, P. A. Diagnosis of adenocarcinoma in prostate needle biopsy tissue. J. Clin. Pathol. 60, 35–42 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lawson, D. A., Xin, L., Lukacs, R. U., Cheng, D. & Witte, O. N. Isolation and functional characterization of murine prostate stem cells. Proc. Natl Acad. Sci. USA 104, 181–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Xin, L., Lukacs, R. U., Lawson, D. A., Cheng, D. & Witte, O. N. Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells 25, 2760–2769 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Shi, X., Gipp, J. & Bushman, W. Anchorage-independent culture maintains prostate stem cells. Dev. Biol. 312, 396–406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garraway, I. P. et al. Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate 70, 491–501 (2010).

    PubMed  Google Scholar 

  9. Lukacs, R. U., Goldstein, A. S., Lawson, D. A., Cheng, D. & Witte, O. N. Isolation, cultivation and characterization of adult murine prostate stem cells. Nat. Protoc. 5, 702–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo, C., Zhang, B. & Garraway, I. P. Isolation and characterization of human prostate stem/progenitor cells. Methods Mol. Biol. 879, 315–326 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Goldstein, A. S. et al. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc. Natl Acad. Sci. USA 105, 20882–20887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lawson, D. A. et al. Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc. Natl Acad. Sci. USA 107, 2610–2615 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, Z. A. et al. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat. Cell Biol. 15, 274–283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    Article  PubMed  Google Scholar 

  15. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Yui, S. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat. Med. 18, 618–623 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Kondo, J. et al. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc. Natl Acad. Sci. USA 108, 6235–6240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ootani, A. et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 15, 701–706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barker, N. et al. Lgr5(+ ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Huch, M. et al. In vitro expansion of single Lgr5 + liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Greggio, C. et al. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 140, 4452–4462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, X. et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495–500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo, W. et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148, 1015–1028 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lang, S. H. et al. Experimental prostate epithelial morphogenesis in response to stroma and three-dimensional matrigel culture. Cell Growth Differ. 12, 631–640 (2001).

    CAS  PubMed  Google Scholar 

  28. Cano, P., Godoy, A., Escamilla, R., Dhir, R. & Onate, S. A. Stromal-epithelial cell interactions and androgen receptor-coregulator recruitment is altered in the tissue microenvironment of prostate cancer. Cancer Res. 67, 511–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, X. et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am. J. Pathol. 180, 599–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, L. et al. ROCK inhibitor Y-27632 suppresses dissociation-induced apoptosis of murine prostate stem/progenitor cells and increases their cloning efficiency. PLoS ONE 6, e18271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, Y. et al. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc. Natl Acad. Sci. USA 107, 8129–8134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao, N. et al. Forkhead box A1 regulates prostate ductal morphogenesis and promotes epithelial cell maturation. Development 132, 3431–3443 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Ousset, M. et al. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat. Cell Biol. 14, 1131–1138 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Choi, N., Zhang, B., Zhang, L., Ittmann, M. & Xin, L. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21, 253–265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu, T. L. et al. Conditionally ablated Pten in prostate basal cells promotes basal-to-luminal differentiation and causes invasive prostate cancer in mice. Am. J. Pathol. 182, 975–991 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Aytes, A. et al. ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer. Proc. Natl Acad. Sci. USA 110, E3506–E3515 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhatia-Gaur, R. et al. Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 13, 966–977 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, M. J. et al. Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res. 62, 2999–3004 (2002).

    CAS  PubMed  Google Scholar 

  42. Kim, M. J. et al. Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc. Natl Acad. Sci. USA 99, 2884–2889 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Greenberg, N. M. et al. Prostate cancer in a transgenic mouse. Proc. Natl Acad. Sci. USA 92, 3439–3443 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Masumori, N. et al. A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res. 61, 2239–2249 (2001).

    CAS  PubMed  Google Scholar 

  45. Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Aytes, A. et al. Cross-species analysis of genome-wide regulatory networks identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer Cell 25, 638–651 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Irshad, S. et al. A molecular signature predictive of indolent prostate cancer. Sci. Transl. Med. 5, 202ra122 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Floc’h, N. et al. Dual targeting of the Akt/mTOR signaling pathway inhibits castration-resistant prostate cancer in a genetically engineered mouse model. Cancer Res. 72, 4483–4493 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Carver, B. S. et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19, 575–586 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Korenchuk, S. et al. VCaP, a cell-based model system of human prostate cancer. In Vivo 15, 163–168 (2001).

    CAS  PubMed  Google Scholar 

  51. Sasai, Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12, 520–530 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. McKeehan, W. L., Adams, P. S. & Rosser, M. P. Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res. 44, 1998–2010 (1984).

    CAS  PubMed  Google Scholar 

  53. Lang, S. H. et al. Differentiation of prostate epithelial cell cultures by matrigel/stromal cell glandular reconstruction. In Vitro Cell. Dev. Biol. Anim. 42, 273–280 (2006).

    Article  PubMed  Google Scholar 

  54. Lamb, L. E., Knudsen, B. S. & Miranti, C. K. E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model. J. Cell Sci. 123, 266–276 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Marker, P. C., Donjacour, A. A., Dahiya, R. & Cunha, G. R. Hormonal, cellular, and molecular control of prostatic development. Dev. Biol. 253, 165–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Cunha, G. R. Mesenchymal-epithelial interactions: past, present, and future. Differentiation 76, 578–586 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Stange, D. E. et al. Differentiated Troy + chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357–368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, J. et al. Regenerated luminal epithelial cells are derived from preexisting luminal epithelial cells in adult mouse prostate. Mol. Endocrinol. 25, 1849–1857 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koo, B. K. et al. Controlled gene expression in primary Lgr5 organoid cultures. Nat. Methods 9, 81–83 (2012).

    Article  CAS  Google Scholar 

  60. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Sachs, N. & Clevers, H. Organoid cultures for the analysis of cancer phenotypes. Curr. Opin. Genet. Dev. 24, 68–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Ranga, A., Gjorevski, N. & Lutolf, M. P. Drug discovery through stem cell-based organoid models. Adv. Drug Deliv. Rev. 69-70, 19–28 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Centenera, M. M., Raj, G. V., Knudsen, K. E., Tilley, W. D. & Butler, L. M. Ex vivo culture of human prostate tissue and drug development. Nat. Rev. Urol. 10, 483–487 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Toivanen, R. et al. A preclinical xenograft model identifies castration-tolerant cancer-repopulating cells in localized prostate tumors. Sci. Transl. Med. 5, 187ra171 (2013).

    Article  Google Scholar 

  65. Lin, D. et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Van Keymeulen, A. et al. Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J. Cell. Biol. 187, 91–100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lesche, R. et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32, 148–149 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Giannico, G. A., Ross, H. M., Lotan, T. & Epstein, J. I. Aberrant expression of p63 in adenocarcinoma of the prostate: a radical prostatectomy study. Am. J. Surg. Pathol. 37, 1401–1406 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Kruithof-de Julio, M. Hanoun and P. Frenette for initial discussions about organoid culture, C. Sawyers and C. Abate-Shen for providing pathway inhibitors, C. Liu and the HICCC Flow Cytometry Shared Resource for flow-sorting, D. Sun for assistance with specimen acquisition, the HICCC Molecular Pathology Shared Resource for organoid sectioning and H&E staining, F. Talos for helpful comments on the culture protocol, D-E Parfitt for assistance with cell-picking, and C. Abate-Shen and F. Talos for insightful discussions and comments on the manuscript. This work was supported by postdoctoral fellowships from the DOD Prostate Cancer Research Program (C.W.C., M.S. and R.T.), by a Residency Research Award from the Urology Care Foundation (L.J.B.), and by grants from the National Institutes of Health (M.M.S.).

Author information

Authors and Affiliations

Authors

Contributions

C.W.C. and M.L. developed the organoid culture protocol, C.W.C. and M.S. performed analyses of CARN-derived and normal prostate organoids, M.S. performed lineage-tracing studies, M.L. performed analyses of transformed CARN organoids and drug response, R.T. performed analyses of benign human prostate organoids, M.S. and C.W.C. analysed VCaP organoids, L.J.B. performed studies of tumour organoids from mouse models, and S.K.B. assisted with single-cell experiments and tissue grafts, K.K.B. and J.M.M. provided surgical specimens, and H.H. performed pathological analyses. C.W.C., M.S., M.L., R.T., L.J.B., M.C.B, H.H. and M.M.S. designed experiments, analysed data and wrote the manuscript.

Corresponding authors

Correspondence to Chee Wai Chua, Maho Shibata, Ming Lei or Michael M. Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Analysis of normal organoids during serial passaging.

(ac) Bright-field images of organoids from normal prostate epithelium at passage 1 (a), passage 6 (b), and passage 13 (c). (d,e) Analysis of organoids at passage 3 shows normal expression of the basal marker p63 (arrowheads, d) and the luminal marker CK8 (d,e), as well as nuclear expression of AR (arrows, e); yellow arrow in d indicates intermediate cell that co-expresses p63 and CK8. Scale bars in d,e correspond to 50 μm and in ac to 100 μm.

Supplementary Figure 2 Specificity of luminal and basal lineage-marking in prostate epithelium in vivo.

Sections from the anterior prostate of CK5-CreERT2; R26R-YFP mice (a), CK8-CreERT2; R26R-YFP mice (b), CK18-CreERT2; R26R-YFP mice (c), and CK18-CreERT2; R26R-Tomato mice (d) demonstrate specificity of basal marking (arrowheads, a) and luminal marking (arrows, bd). Scale bars correspond to 100 μm.

Supplementary Figure 3 Generation of human prostate organoids.

(ae) Establishment of organoids from benign human prostate specimens. (fj) Generation of organoids from the VCaP prostate cancer cell line. (a,f) Bright-field images. (b,g) H&E staining. (c,h) Ki67 immunostaining; arrows indicate proliferating cells. (d) Most exterior cells in benign human organoids are CK8+p63+ cells (arrowheads), while many interior cells are CK8+ only (arrow). (e) Most cells in benign human organoids are AR+CK18+ cells (arrows). (i) VCaP organoids display immunostaining for CK18, but not p63. (j) VCaP organoids are strongly positive for both AR and CK8. Scale bars in be,gj correspond to 50 μm, and in a,f correspond to 100 μm.

Supplementary information

Supplementary Information

Supplementary Information (PDF 907 kb)

Supplementary Table 1

Supplementary Information (XLSX 51 kb)

Supplementary Table 2

Supplementary Information (XLSX 36 kb)

Supplementary Table 3

Supplementary Information (XLSX 43 kb)

Supplementary Table 4

Supplementary Information (XLSX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chua, C., Shibata, M., Lei, M. et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat Cell Biol 16, 951–961 (2014). https://doi.org/10.1038/ncb3047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3047

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer