Bladder cancers arise from distinct urothelial sub-populations

Abstract

Bladder cancer is the sixth most common cancer in humans. This heterogeneous set of lesions including urothelial carcinoma (Uca) and squamous cell carcinoma (SCC) arise from the urothelium, a stratified epithelium composed of K5-expressing basal cells, intermediate cells and umbrella cells. Superficial Uca lesions are morphologically distinct and exhibit different clinical behaviours: carcinoma in situ (CIS) is a flat aggressive lesion, whereas papillary carcinomas are generally low-grade and non-invasive. Whether these distinct characteristics reflect different cell types of origin is unknown. Here we show using lineage tracing in a murine model of carcinogenesis that intermediate cells give rise primarily to papillary lesions, whereas K5-basal cells are likely progenitors of CIS, muscle-invasive lesions and SCC depending on the genetic background. Our results provide a cellular and genetic basis for the diversity in bladder cancer lesions and provide a possible explanation for their clinical and morphological differences.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Characterization of cell-type-specific Cre lines.
Figure 2: Tumour types observed after BBN treatment.
Figure 3: Keratin-5-expressing basal cells give rise to CIS and muscle-invasive lesions.
Figure 4: Intermediate cells contribute to papillary lesions.
Figure 5: Keratin-5-expressing basal cells contribute to SCC.
Figure 6

References

  1. 1

    Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  Google Scholar 

  2. 2

    Prasad, S. M., Decastro, G. J., Steinberg, G. D. & Medscape, Urothelial carcinoma of the bladder: definition, treatment and future efforts. Nat. Rev. Urol. 8, 631–642 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Dahm, P. & Gschwend, J. E. Malignant non-urothelial neoplasms of the urinary bladder: a review. Eur. Urol. 44, 672–681 (2003).

    Article  PubMed  Google Scholar 

  4. 4

    Goebell, P. J. & Knowles, M. A. Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium. Urol. Oncol. 28, 409–428 (2010).

    Article  PubMed  Google Scholar 

  5. 5

    Wu, X. R. Urothelial tumorigenesis: a tale of divergent pathways. Nat. Rev. Cancer 5, 713–725 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Knowles, M. A. Bladder cancer subtypes defined by genomic alterations. Scand. J. Urol. Nephrol. 42, 116–130 (2008).

    Article  Google Scholar 

  7. 7

    Castillo-Martin, M., Domingo-Domenech, J., Karni-Schmidt, O., Matos, T. & Cordon-Cardo, C. Molecular pathways of urothelial development and bladder tumorigenesis. Urol. Oncol.-Semin. Ori. 28, 401–408 (2010).

    Article  CAS  Google Scholar 

  8. 8

    Chan, K. S. et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl Acad. Sci. USA 106, 14016–14021 (2009).

    Article  PubMed  Google Scholar 

  9. 9

    Cordon-Cardo, C. Molecular alterations associated with bladder cancer initiation and progression. Scand. J. Urol. Nephrol. Suppl. 218, 154–165 (2008).

    Article  CAS  Google Scholar 

  10. 10

    Chan, K. S., Volkmer, J. P. & Weissman, I. Cancer stem cells in bladder cancer: a revisited and evolving concept. Curr. Opin. Urol. 20, 393–397 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Dancik, G. M., Owens, C. R., Iczkowski, K. A. & Theodorescu, D. A cell of origin gene signature indicates human bladder cancer has distinct cellular progenitors. Stem Cells 32, 974–982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Volkmer, J. P. et al. Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc. Natl Acad. Sci. USA 109, 2078–2083 (2012).

    Article  PubMed  Google Scholar 

  13. 13

    Dalbagni, G., Presti, J., Reuter, V., Fair, W. R. & Cordon-Cardo, C. Genetic alterations in bladder cancer. Lancet 342, 469–471 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Spruck, C. H. III et al. Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res. 54, 784–788 (1994).

    CAS  PubMed  Google Scholar 

  15. 15

    Cheng, L., Cheville, J. C., Neumann, R. M. & Bostwick, D. G. Flat intraepithelial lesions of the urinary bladder. Cancer 88, 625–631 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Cheng, L. et al. Urothelial papilloma of the bladder. Clinical and biologic implications. Cancer 86, 2098–2101 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Mitra, A. P. & Cote, R. J. Molecular pathogenesis and diagnostics of bladder cancer. Annu. Rev. Pathol. 4, 251–285 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Jost, S. P., Gosling, J. A. & Dixon, J. S. The morphology of normal human bladder urothelium. J. Anat. 167, 103–115 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Gandhi, D. et al. Retinoid signalling in progenitors controls specification and regeneration of the urothelium. Dev. Cell 26, 469–482 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Yamany, T., van Batavia, J. & Mendelsohn, C. Formation and regeneration of the urothelium. Curr. Opin. Organ Transplant. (2014).

  21. 21

    Khandelwal, P., Abraham, S. N. & Apodaca, G. Cell biology and physiology of the uroepithelium. Am. J. Physiol. Renal. Physiol. 297, F1477–F1501 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Sun, T. T., Liang, F. X. & Wu, X. R. Uroplakins as markers of urothelial differentiation. Adv. Exp. Med. Biol. 462, 7–18 (1999) discussion 103–114

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Kong, X-T. et al. Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J. Cell. Biol. 167, 1195–1204 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Jost, S. P. Cell cycle of normal bladder urothelium in developing and adult mice. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 57, 27–36 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Jost, S. P. Renewal of normal urothelium in adult mice. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 51, 65–70 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Kreft, M. E., Hudoklin, S., Jezernik, K. & Romih, R. Formation and maintenance of blood-urine barrier in urothelium. Protoplasma 246, 3–14 (2010).

    Article  PubMed  Google Scholar 

  27. 27

    Mysorekar, I. U., Mulvey, M. A., Hultgren, S. J. & Gordon, J. I. Molecular regulation of urothelial renewal and host defenses during infection with uropathogenic Escherichia coli. J. Biol. Chem. 277, 7412–7419 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Farsund, T. & Dahl, E. Cell kinetics of mouse urinary bladder epithelium. III. A histologic and ultrastructural study of bladder epithelium during regeneration after a single dose of cyclophosphamide, with special reference to the mechanism by which polyploid cells are formed. Virchows Arch. B Cell Pathol. 26, 215–223 (1978).

    CAS  PubMed  Google Scholar 

  29. 29

    Jost, S. P. & Potten, C. S. Urothelial proliferation in growing mice. Cell Tissue Kinet. 19, 155–160 (1986).

    CAS  PubMed  Google Scholar 

  30. 30

    Shin, K. et al. Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma. Nat. Cell Biol. 16, 469–478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Shin, K. et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472, 110–114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Indra, A. K. et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen- inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 27, 4324–4327 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Shen, T. H. et al. A BAC-based transgenic mouse specifically expresses an inducible Cre in the urothelium. PLoS ONE 7, e35243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Cancer Genome Atlas Research Network, Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article  CAS  Google Scholar 

  36. 36

    Shariat, S. F. et al. Prognostic value of P53 nuclear accumulation and histopathologic features in T1 transitional cell carcinoma of the urinary bladder. Urology 56, 735–740 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Gao, J. et al. p53 deficiency provokes urothelial proliferation and synergizes with activated Ha-ras in promoting urothelial tumorigenesis. Oncogene 23, 687–696 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Ogawa, K. et al. Comparison of uroplakin expression during urothelial carcinogenesis induced by N-butyl-N-(4-hydroxybutyl)nitrosamine in rats and mice. Toxicol. Pathol. 27, 645–651 (1999).

    Article  PubMed  Google Scholar 

  40. 40

    Vasconcelos-Nobrega, C., Colaco, A., Lopes, C. & Oliveira, P. A. Review: BBN as an urothelial carcinogen. In vivo 26, 727–739 (2012).

    CAS  PubMed  Google Scholar 

  41. 41

    Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Zupancic, D., Ovcak, Z., Vidmar, G. & Romih, R. Altered expression of UPIa, UPIb, UPII, and UPIIIa during urothelial carcinogenesis induced by N-butyl-N-(4-hydroxybutyl)nitrosamine in rats. Virchows Arch. (2011).

  43. 43

    Ozaki, K. et al. High susceptibility of p53(+/ −) knockout mice in N-butyl-N-(4-hydroxybutyl)nitrosamine urinary bladder carcinogenesis and lack of frequent mutation in residual allele. Cancer Res. 58, 3806–3811 (1998).

    CAS  PubMed  Google Scholar 

  44. 44

    He, Z., Kosinska, W., Zhao, Z. L., Wu, X. R. & Guttenplan, J. B. Tissue-specific mutagenesis by N-butyl-N-(4-hydroxybutyl)nitrosamine as the basis for urothelial carcinogenesis. Mutat. Res. 742, 92–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Bertram, J. S. & Craig, A. W. Specific induction of bladder cancer in mice by butyl-(4-hydroxybutyl)-nitrosamine and the effects of hormonal modifications on the sex difference in response. Eur. J. Cancer 8, 587–594 (1972).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Freedman, N. D., Silverman, D. T., Hollenbeck, A. R., Schatzkin, A. & Abnet, C. C. Association between smoking and risk of bladder cancer among men and women. J. Am. Med. Assoc. 306, 737–745 (2011).

    Article  CAS  Google Scholar 

  47. 47

    Madeb, R. & Messing, E. M. Gender, racial and age differences in bladder cancer incidence and mortality. Urol. Oncol. 22, 86–92 (2004).

    Article  PubMed  Google Scholar 

  48. 48

    Hsu, J. W. et al. Decreased tumorigenesis and mortality from bladder cancer in mice lacking urothelial androgen receptor. Am. J. Pathol. 182, 1811–1820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Edgecombe, A., Nguyen, B. N., Djordjevic, B., Belanger, E. C. & Mai, K. T. Utility of cytokeratin 5/6, cytokeratin 20, and p16 in the diagnosis of reactive urothelial atypia and noninvasive component of urothelial neoplasia. Appl. Immunohistochem. Mol Morphol. 20, 264–271 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Yin, H., He, Q., Li, T. & Leong, A. S. Cytokeratin 20 and Ki-67 to distinguish carcinoma in situ from flat non-neoplastic urothelium. Appl. Immunohistochem. Mol. Morphol. 14, 260–265 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Montironi, R. & Lopez-Beltran, A. The 2004 WHO classification of bladder tumors: A summary and commentary. Int. J. Surg. Pathol. 13, 143–153 (2005).

    Article  PubMed  Google Scholar 

  52. 52

    Montironi, R., Mazzucchelli, R., Scarpelli, M., Lopez-Beltran, A. & Cheng, L. Morphological diagnosis of urothelial neoplasms. J. Clin. Pathol. 61, 3–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Cheville, J. C. et al. Inverted urothelial papilloma: is ploidy, MIB-1 proliferative activity, or p53 protein accumulation predictive of urothelial carcinoma? Cancer 88, 632–636 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    McConkey, D. J. et al. Molecular genetics of bladder cancer: Emerging mechanisms of tumor initiation and progression. Urol. Oncol. 28, 429–440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Morrison, C. D. et al. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer. Proc. Natl Acad. Sci. USA 111, E672–E681 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Herr, H. W. Tumor progression and survival of patients with high grade, noninvasive papillary (TaG3) bladder tumors: 15-year outcome. J. Urol. 163, 60–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 43, 875–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Kaufman, D. S., Shipley, W. U. & Feldman, A. S. Bladder cancer. Lancet 374, 239–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Bamgbola, O. F. Urinary schistosomiasis. Pediatr. Nephrol. (2014)10.1007/s00467-013-2723-1

  60. 60

    Michaud, D. S. Chronic inflammation and bladder cancer. Urol. Oncol. 25, 260–268 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Locke, J. R., Hill, D. E. & Walzer, Y. Incidence of squamous cell carcinoma in patients with long-term catheter drainage. J. Urol. 133, 1034–1035 (1985).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Hammes, J. S., Bestoso, J. T. & Sharma, A. Squamous cell carcinoma in situ arising at the exit site of a tunneled catheter. Am. J. Kidney Dis. 44, e43–e46 (2004).

    Article  PubMed  Google Scholar 

  63. 63

    Delnay, K. M., Stonehill, W. H., Goldman, H., Jukkola, A. F. & Dmochowski, R. R. Bladder histological changes associated with chronic indwelling urinary catheter. J. Urol. 161, 1106–1108 (1999).

    CAS  PubMed  Google Scholar 

  64. 64

    Ray, D. et al. Transcriptional profiling of the bladder in urogenital schistosomiasis reveals pathways of inflammatory fibrosis and urothelial compromise. PLoS Neglect. Trop. Dis. 6, e1912 (2012).

    Article  CAS  Google Scholar 

  65. 65

    Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Finstad for help with data collection, D. Metzger and P. Chambon for the Krt5CreERT2 line, F. H. Li for technical assistance, the Herbert Irving Comprehensive Cancer Center Histology Core facility for paraffin embedding and the Herbert Irving Comprehensive Cancer Center Microscopy Core for help with confocal microscopy. We thank C. Abate-Shen for critical reading of the manuscript and M. Benson, T. Owczarek and J. Mckiernan for helpful discussions. This work was funded by The TJ Martell Foundation (C.M.) and a Dean’s Research Fellowship from Columbia University (T.Y.).

Author information

Affiliations

Authors

Contributions

J.V.B., T.Y. and A.M. contributed equally to this work. A.M. and C.M. conceived ideas and experimental design. J.V.B., T.Y., H.D., E.B., D.O. and K.S. collected data. J.V.B., T.Y. and M.M. performed histopathological analysis. J.V.B. and T.Y. interpreted the data. J.V.B., T.Y. and C.M. wrote the manuscript. X-R.W., M.D. and C.C-C. provided technical support and conceptual advice.

Corresponding authors

Correspondence to Jason Van Batavia or Tammer Yamany or Andrei Molotkov or Cathy Mendelsohn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Specificity and labelling in Cre reporter lines.

A bar graph showing the percentage of labelled cells after Tamoxifen (Tm)-induction in Upk2LZ, Krt5Tom and Krt5LZ mice. Tamoxifen dependent recombination in Upk2LZ mice was on average 29% (SD = 8.5,n = 3 mice); 39% on average in K5Tom mice (SD = 15,n = 8), and 28% in K5LZ mice (SD = 10,n = 3). Analysis of Tamoxifen-treated adult Upk2CreERT2;LacZ;p53+/− (Upk2LZ mice) revealed Cre-dependent recombination in 29% of the Intermediate and Superficial cell populations (n = 3 animals, SD = 8.5), and labelled cells were rare in the basal layer (less than or equal to 0.05%; 9/17,454, n = 15). Analysis of Krt5CreERT2LacZ;p53+/− (K5LZ) and Krt5CreERT2;mTom(K5Tom) lines indicates that in both, recombination was Tamoxifen-dependent and specific (Fig. 1g, h, k, l). We observed expression of the lineage tag on average in 39% of the K5-basal cell population in K5Tom mice (n = 8, SD = 15) and 28% of K5-basal cells in K5LZ mice (n = 3, SD = 10). Analysis of the distribution of labelled K5-basal cells and their descendants in Tamoxifen-induced K5Tom and K5LZ mice revealed that Cre-dependent recombination was selectively localized; rare labelled cells were present in the intermediate layer and no detectable labelled cells in the superficial layer (2/13352, labelled Intermediate cells, 0.01%; 0/13352 Superficial cells, n = 16).

Supplementary Figure 2 Characteristic response to BBN treatment separated by weeks of BBN exposure, sex and p53 status.

(A-F) H&E stained section through p53+/− male mice demonstrating CIS at 16 weeks (A, B), a high grade papillary lesion at 20 weeks (C, D) and invasion at 24 weeks (E, F). (G-L) H&E stained section through p53+/− female mice demonstrating dysplasia at 16 weeks (G, H), CIS at 20 weeks (I, J) and invasion at 24 weeks (K, L). (M-R) H&E stained section through p53+/+ male mice demonstrating squamous metaplasia at 16 weeks (M, N), SCC at 20 weeks (O, P) and invasive SCC at 24 weeks (Q, R). (S-X) H&E stained section through p53+/+ female mice demonstrating squamous metaplasia and SCC at 16 weeks (S, T), papillary SCC at 20 weeks (U, V) and SCC invasion into the muscle and fat at 24 (W, X) weeks. Abbreviations: CIS = Carcinoma in situ; SCC = Squamous cell carcinoma. Magnifications: A, C, E, G, I, K, M, O, Q, S, U, W X04; B, H, J X20 zoomed; D, F, N, P, R, T, V, X X20; L X10. Scale bars: A, C, E, G, I, K, M, O, Q, S, U, W 500 μm; B, H, J: 50 μm; D, F, N, P, R, T, V, X: 100 μm; L: 200 μm.

Supplementary information

Supplementary Information

Supplementary Information (PDF 643 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Batavia, J., Yamany, T., Molotkov, A. et al. Bladder cancers arise from distinct urothelial sub-populations. Nat Cell Biol 16, 982–991 (2014). https://doi.org/10.1038/ncb3038

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing