Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis

Abstract

Recent pre-clinical and clinical research has provided evidence that cancer progression is driven not only by a tumour's underlying genetic alterations and paracrine interactions within the tumour microenvironment, but also by complex systemic processes. We review these emerging paradigms of cancer pathophysiology and discuss how a clearer understanding of systemic regulation of cancer progression could guide development of new therapeutic modalities and efforts to prevent disease relapse following initial diagnosis and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composition of local and systemic tumour environments.
Figure 2: Mechanisms of systemic regulation of metastatic tumour cell extravasation and colonization.
Figure 3: Tumour-driven pathophysiological processes underlying cancer progression.

Similar content being viewed by others

References

  1. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252 (2009).

    CAS  PubMed  Google Scholar 

  2. Pietras, K. & Ostman, A. Hallmarks of cancer: interactions with the tumor stroma. Exp. Cell Res. 316, 1324–1331 (2010).

    CAS  PubMed  Google Scholar 

  3. Allinen, M. et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6, 17–32 (2004).

    CAS  PubMed  Google Scholar 

  4. Chang, H. Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2, E7 (2004).

    PubMed  PubMed Central  Google Scholar 

  5. Finak, G. et al. Gene expression signatures of morphologically normal breast tissue identify basal-like tumors. Breast Cancer Res. 8, R58 (2006).

    PubMed  PubMed Central  Google Scholar 

  6. Casey, T. et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res. Treat. 114, 47–62 (2009).

    CAS  PubMed  Google Scholar 

  7. Ma, X. J., Dahiya, S., Richardson, E., Erlander, M. & Sgroi, D. C. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 11, R7 (2009).

    PubMed  PubMed Central  Google Scholar 

  8. Zajicek, G. Cancer as a systemic disease. Med. Hypotheses 4, 193–207 (1978).

    CAS  PubMed  Google Scholar 

  9. Redig, A. J. & McAllister, S. S. Breast cancer as a systemic disease: a view of metastasis. J. Intern. Med. 274, 113–126 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    CAS  PubMed  Google Scholar 

  11. Arwert, E. N., Hoste, E. & Watt, F. M. Epithelial stem cells, wound healing and cancer. Nat. Rev. Cancer 12, 170–180 (2012).

    CAS  PubMed  Google Scholar 

  12. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6, 24–37 (2006).

    CAS  PubMed  Google Scholar 

  14. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    CAS  PubMed  Google Scholar 

  15. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Trinchieri, G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu. Rev. Immunol. 30, 677–706 (2012).

    CAS  PubMed  Google Scholar 

  17. Kalluri, R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3, 422–433 (2003).

    CAS  PubMed  Google Scholar 

  18. Lech, M. & Anders, H. J. Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim. Biophys. Acta 1832, 989–997 (2013).

    CAS  PubMed  Google Scholar 

  19. Polyak, K., Haviv, I. & Campbell, I. G. Co-evolution of tumor cells and their microenvironment. Trends Genet. 25, 30–38 (2009).

    CAS  PubMed  Google Scholar 

  20. Marsh, T., Pietras, K. & McAllister, S. S. Fibroblasts as architects of cancer pathogenesis. Biochim. Biophys. Acta 1832, 1070–1078 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. Bissell, M. J. & Radisky, D. Putting tumours in context. Nat. Rev. Cancer 1, 46–54 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Seruga, B., Zhang, H., Bernstein, L. J. & Tannock, I. F. Cytokines and their relationship to the symptoms and outcome of cancer. Nat. Rev. Cancer 8, 887–899 (2008).

    CAS  PubMed  Google Scholar 

  23. Gao, D. & Mittal, V. The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression. Trends Mol. Med. 15, 333–343 (2009).

    CAS  PubMed  Google Scholar 

  24. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    CAS  PubMed  Google Scholar 

  25. Cuiffo, B. G. & Karnoub, A. E. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh. Migr. 6, 220–230 (2012).

    PubMed  PubMed Central  Google Scholar 

  26. Shaked, Y., McAllister, S., Fainaru, O. & Almog, N. Tumor dormancy and the angiogenic switch: possible implications of bone marrow-derived cells. Curr. Pharm. Des. 19, 1–14 (2014).

    Google Scholar 

  27. Eash, K. J., Greenbaum, A. M., Gopalan, P. K. & Link, D. C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest. 120, 2423–2431 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin, C. et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19, 583–593 (2003).

    CAS  PubMed  Google Scholar 

  29. Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    CAS  PubMed  Google Scholar 

  30. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    CAS  PubMed  Google Scholar 

  31. Christopher, M. J., Rao, M., Liu, F., Woloszynek, J. R. & Link, D. C. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J. Exp. Med. 208, 251–260 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261–271 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Winkler, I. G. et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116, 4815–4828 (2010).

    CAS  PubMed  Google Scholar 

  34. Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat. Biotechnol. 25, 911–920 (2007).

    CAS  PubMed  Google Scholar 

  35. Shojaei, F. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007).

    CAS  PubMed  Google Scholar 

  36. McAllister, S. S. et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133, 994–1005 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Elkabets, M. et al. Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J. Clin. Invest. 121, 784–799 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kopp, H. G., Ramos, C. A. & Rafii, S. Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr. Opin. Hematol. 13, 175–181 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Purhonen, S. et al. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc. Natl Acad. Sci. USA 105, 6620–6625 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    CAS  PubMed  Google Scholar 

  41. Hattori, K. et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97, 3354–3360 (2001).

    CAS  PubMed  Google Scholar 

  42. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Anders, H. J., Romagnani, P. & Mantovani, A. Pathomechanisms: homeostatic chemokines in health, tissue regeneration, and progressive diseases. Trends Mol. Med. 20, 154–165 (2014).

    CAS  PubMed  Google Scholar 

  44. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    CAS  PubMed  Google Scholar 

  45. Kidd, S. et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27, 2614–2623 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Melani, C., Chiodoni, C., Forni, G. & Colombo, M. P. Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102, 2138–2145 (2003).

    CAS  PubMed  Google Scholar 

  47. Serafini, P., Borrello, I. & Bronte, V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin. Cancer Biol. 16, 53–65 (2006).

    CAS  PubMed  Google Scholar 

  48. Almand, B. et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166, 678–689 (2001).

    CAS  PubMed  Google Scholar 

  49. Young, M. R., Wright, M. A., Vellody, K. & Lathers, D. M. Skewed differentiation of bone marrow CD34+ cells of tumor bearers from dendritic toward monocytic cells, and the redirection of differentiation toward dendritic cells by 1alpha, 25-dihydroxyvitamin D3. Int. J. Immunopharmacol. 21, 675–688 (1999).

    CAS  PubMed  Google Scholar 

  50. Yang, L. et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cortez-Retamozo, V. et al. Origins of tumor-associated macrophages and neutrophils. Proc. Natl Acad. Sci. USA 109, 2491–2496 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cortez-Retamozo, V. et al. Angiotensin II drives the production of tumor-promoting macrophages. Immunity 38, 296–308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ugurel, S., Rappl, G., Tilgen, W. & Reinhold, U. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J. Clin. Oncol. 19, 577–583 (2001).

    CAS  PubMed  Google Scholar 

  55. Holzer, G. et al. Concentration of vascular endothelial growth factor (VEGF) in the serum of patients with malignant bone tumors. Med. Pediatr. Oncol. 36, 601–604 (2001).

    CAS  PubMed  Google Scholar 

  56. Poon, R. T. et al. Serum vascular endothelial growth factor predicts venous invasion in hepatocellular carcinoma: a prospective study. Ann. Surg. 233, 227–235 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    CAS  PubMed  Google Scholar 

  58. Rudland, P. S. et al. Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res. 62, 3417–3427 (2002).

    CAS  PubMed  Google Scholar 

  59. Mor, G. et al. Serum protein markers for early detection of ovarian cancer. Proc. Natl Acad. Sci. USA 102, 7677–7682 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tuck, A. B., Chambers, A. F. & Allan, A. L. Osteopontin overexpression in breast cancer: knowledge gained and possible implications for clinical management. J. Cell. Biochem. 102, 859–868 (2007).

    CAS  PubMed  Google Scholar 

  61. Azmi, A. S., Bao, B. & Sarkar, F. H. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 32, 623–642 (2013).

    CAS  PubMed  Google Scholar 

  62. Pucci, F. & Pittet, M. J. Molecular pathways: tumor-derived microvesicles and their interactions with immune cells in vivo. Clin. Cancer Res. 19, 2598–2604 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Grange, C. et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 71, 5346–5356 (2011).

    CAS  PubMed  Google Scholar 

  65. Fremder, E. et al. Tumor-derived microparticles induce bone marrow-derived cell mobilization and tumor homing: A process regulated by osteopontin. Int. J. Cancer 135, 270–281 (2014).

    CAS  PubMed  Google Scholar 

  66. Zetter, B. R. Angiogenesis and tumor metastasis. Annu. Rev. Med. 49, 407–424 (1998).

    CAS  PubMed  Google Scholar 

  67. Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563–572 (2002).

    CAS  PubMed  Google Scholar 

  68. Fidler, I. J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    CAS  PubMed  Google Scholar 

  69. Gupta, G. P. & Massague, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    CAS  PubMed  Google Scholar 

  70. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    CAS  PubMed  Google Scholar 

  71. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).

    CAS  PubMed  Google Scholar 

  72. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dawson, M. R., Duda, D. G., Chae, S. S., Fukumura, D. & Jain, R. K. VEGFR1 activity modulates myeloid cell infiltration in growing lung metastases but is not required for spontaneous metastasis formation. PLoS ONE 4, e6525 (2009).

    PubMed  PubMed Central  Google Scholar 

  74. Peinado, H., Lavotshkin, S. & Lyden, D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol. 21, 139–146 (2011).

    CAS  PubMed  Google Scholar 

  75. Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sceneay, J. et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res. 72, 3906–3911 (2012).

    CAS  PubMed  Google Scholar 

  77. Kim, S. et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102–106 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sceneay, J., Smyth, M. J. & Moller, A. The pre-metastatic niche: finding common ground. Cancer Metastasis Rev. 32, 449–464 (2013).

    CAS  PubMed  Google Scholar 

  79. Tsou, C. L. et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117, 902–909 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kang, S. Y. et al. Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and Tsp-1. Proc. Natl Acad. Sci. USA 106, 12115–12120 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schelter, F. et al. Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10. Clin. Exp. Metastasis 28, 793–802 (2011).

    CAS  PubMed  Google Scholar 

  82. Jung, T. et al. CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia 11, 1093–1105 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Taranova, A. G. et al. Allergic pulmonary inflammation promotes the recruitment of circulating tumor cells to the lung. Cancer Res. 68, 8582–8589 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Esposito, M. & Kang, Y. Targeting tumor-stromal interactions in bone metastasis. Pharmacol. Ther. 141, 222–233 (2014).

    CAS  PubMed  Google Scholar 

  85. Pantel, K., Brakenhoff, R. H. & Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8, 329–340 (2008).

    CAS  PubMed  Google Scholar 

  86. Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

    CAS  PubMed  Google Scholar 

  87. Roy, L. D. et al. Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer. BMC Cancer 11, 365 (2011).

    PubMed  PubMed Central  Google Scholar 

  88. Naumov, G. N. et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 62, 2162–2168 (2002).

    CAS  PubMed  Google Scholar 

  89. Almog, N. Molecular mechanisms underlying tumor dormancy. Cancer Lett. 294, 139–146 (2010).

    CAS  PubMed  Google Scholar 

  90. Mullen, C. A., Urban, J. L., Van Waes, C., Rowley, D. A. & Schreiber, H. Multiple cancers. Tumor burden permits the outgrowth of other cancers. J. Exp. Med. 162, 1665–1682 (1985).

    CAS  PubMed  Google Scholar 

  91. Reilly, R. T. et al. HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice. Cancer Res. 60, 3569–3576 (2000).

    CAS  PubMed  Google Scholar 

  92. Yan, H. H. et al. Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res. 70, 6139–6149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Granot, Z. et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20, 300–314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gao, D. et al. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res. 72, 1384–1394 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Castano, Z., Tracy, K. & McAllister, S. S. The tumor macroenvironment and systemic regulation of breast cancer progression. Int. J. Dev. Biol. 55, 889–897 (2011).

    PubMed  Google Scholar 

  96. Kuznetsov, H. S. et al. Identification of luminal breast cancers that establish a tumor-supportive macroenvironment defined by proangiogenic platelets and bone marrow-derived cells. Cancer Discov. 2, 1150–1165 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Battinelli, E. M., Markens, B. A. & Italiano, J. E. Jr Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood 118, 1359–1369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Nilsson, R. J. et al. Blood platelets contain tumor-derived RNA biomarkers. Blood 118, 3680–3683 (2011).

    PubMed  PubMed Central  Google Scholar 

  99. Gay, L. J. & Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer 11, 123–134 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Italiano, J. E. Jr et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111, 1227–1233 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Labelle, M. & Hynes, R. O. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov. 2, 1091–1099 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Folkman, J. & Kalluri, R. Cancer without disease. Nature 427, 787 (2004).

    CAS  PubMed  Google Scholar 

  103. Bateman, A. & Bennett, H. P. The granulin gene family: from cancer to dementia. Bioessays 31, 1245–1254 (2009).

    CAS  PubMed  Google Scholar 

  104. Castano, Z. et al. Stromal EGF and IGF1 together modulate plasticity of disseminated triple negative breast tumors. Cancer Discov. 3, 922–935 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Erez, N., Truitt, M., Olson, P. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 17, 135–147 (2010).

    CAS  PubMed  Google Scholar 

  106. Bruzzese, F. et al. Local and systemic pro-tumorigenic effects of fibroblast-derived GDF15/MIC-1. Cancer Res. 74, 3408–3417 (2014).

    CAS  PubMed  Google Scholar 

  107. Breit, S. N. et al. The TGF-beta superfamily cytokine, MIC-1/GDF15: a pleotrophic cytokine with roles in inflammation, cancer and metabolism. Growth Factors 29, 187–195 (2011).

    CAS  PubMed  Google Scholar 

  108. Li, B. et al. Id1-induced IGF-II and its autocrine/endocrine promotion of esophageal cancer progression and chemoresistance-implications for IGF-II and IGF-IR-targeted therapy. Clin. Cancer Res. 20, 2651–2662 (2014).

    PubMed  Google Scholar 

  109. Lippitz, B. E. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 14, e218–228 (2013).

    CAS  PubMed  Google Scholar 

  110. Graus, F. & Dalmau, J. Paraneoplastic neuropathies. Curr. Opin. Neurol. 26, 489–495 (2013).

    CAS  PubMed  Google Scholar 

  111. Taucher, S. et al. Impact of pretreatment thrombocytosis on survival in primary breast cancer. Thromb. Haemost. 89, 1098–1106 (2003).

    CAS  PubMed  Google Scholar 

  112. Stone, R. L. et al. Paraneoplastic thrombocytosis in ovarian cancer. N. Engl. J. Med. 366, 610–618 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004).

    CAS  PubMed  Google Scholar 

  114. Baserga, R., Peruzzi, F. & Reiss, K. The IGF-1 receptor in cancer biology. Int. J. Cancer 107, 873–877 (2003).

    CAS  PubMed  Google Scholar 

  115. Gupta, P. B. et al. Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Res. 67, 2062–2071 (2007).

    CAS  PubMed  Google Scholar 

  116. Demicheli, R., Biganzoli, E., Boracchi, P., Greco, M. & Retsky, M. W. Recurrence dynamics does not depend on the recurrence site. Breast Cancer Res. 10, R83 (2008).

    PubMed  PubMed Central  Google Scholar 

  117. Retsky, M. W., Demicheli, R., Hrushesky, W. J., Baum, M. & Gukas, I. D. Dormancy and surgery-driven escape from dormancy help explain some clinical features of breast cancer. APMIS 116, 730–741 (2008).

    CAS  PubMed  Google Scholar 

  118. Gertz, M. A. Current status of stem cell mobilization. Br. J. Haematol. 150, 647–662 (2010).

    CAS  PubMed  Google Scholar 

  119. Ebos, J. M., Lee, C. R., Christensen, J. G., Mutsaers, A. J. & Kerbel, R. S. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc. Natl Acad. Sci. USA 104, 17069–17074 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Okazaki, T. et al. Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int. Immunol. 18, 1–9 (2006).

    CAS  PubMed  Google Scholar 

  121. Shaked, Y. et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313, 1785–1787 (2006).

    CAS  PubMed  Google Scholar 

  122. Shaked, Y. et al. Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell 14, 263–273 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Barcellos-Hoff, M. H. Does microenvironment contribute to the etiology of estrogen receptor-negative breast cancer? Clin. Cancer Res. 19, 541–548 (2013).

    CAS  PubMed  Google Scholar 

  124. Ebos, J. M., Lee, C. R. & Kerbel, R. S. Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin. Cancer Res. 15, 5020–5025 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Guthrie, G. J. et al. The systemic inflammation-based neutrophil-lymphocyte ratio: Experience in patients with cancer. Crit. Rev. Oncol. Hematol. 88, 218–230 (2013).

    PubMed  Google Scholar 

  126. Absenger, G. et al. A derived neutrophil to lymphocyte ratio predicts clinical outcome in stage II and III colon cancer patients. Br. J. Cancer 109, 395–400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Stotz, M. et al. Increased neutrophil–lymphocyte ratio is a poor prognostic factor in patients with primary operable and inoperable pancreatic cancer. Br. J. Cancer 109, 416–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ishizuka, M., Nagata, H., Takagi, K., Iwasaki, Y. & Kubota, K. Combination of platelet count and neutrophil to lymphocyte ratio is a useful predictor of postoperative survival in patients with colorectal cancer. Br. J. Cancer 109, 401–407 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. McMillan, D. C. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat. Rev. 39, 534–540 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

All figures were conceptualized and created by Victor Fanjul (Universidad de Oviedo, Spain; former summer intern in the McAllister lab). We are grateful for the helpful discussions and/or editorial comments of Zvika Granot, Mikael Pittet and Yuval Shaked. S.S.M. is an American Cancer Society Scholar, an AACR Gertrude B. Elion Cancer Research Scholar and a Presidential Early Career Award for Scientists and Engineers scholar. R.A.W. is a Daniel K. Ludwig Professor for Cancer Research at MIT and an American Cancer Society Research Professor. This work was supported in part by grants from the National Institutes of Health (NCI) RO1 CA166284 and the American Cancer Society (S.S.M.); the Breast Cancer Research Foundation (BCRF), National Institutes of Health (NIH), R01 CA078461, P01 CA080111, and the Ludwig Center for Molecular Oncology at MIT (R.A.W.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandra S. McAllister or Robert A. Weinberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McAllister, S., Weinberg, R. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 16, 717–727 (2014). https://doi.org/10.1038/ncb3015

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3015

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer