Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles

Abstract

Animal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Defects in actomyosin assembly kinetics during cellularization of septin mutants.
Figure 2: Defects in actin and Myo-II organization during cellularization of septin mutants.
Figure 3: Actin organization in DRhoGEF2 mutants.
Figure 4: Electron microscopy of FCs in wild-type and septin mutants.
Figure 5: F-actin molecular orientational order at the FC is decreased in septin mutants.
Figure 6: In vitro reconstituted actin filaments are bundled and curved in the presence of septins.
Figure 7: Negative-stain electron microscopy of in vitro reconstituted actin filaments in the presence of septins.
Figure 8: F-actin bundle formation in the presence of septin hexamers or preformed septin bundles.

References

  1. 1

    Eggert, U. S., Mitchison, T. J. & Field, C. M. Animal cytokinesis: from parts list to mechanisms. Ann. Rev. Biochem. 75, 543–566 (2006).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Green, R. A., Paluch, E. & Oegema, K. Cytokinesis in animal cells. Ann. Rev. Cell Dev. Biol. 28, 29–58 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Murrell, M. P. & Gardel, M. L. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proc. Natl Acad. Sci. USA 109, 20820–20825 (2012).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Vogel, S. K., Petrasek, Z., Heinemann, F. & Schwille, P. Myosin motors fragment and compact membrane-bound actin filaments. eLife 2, e00116 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Glotzer, M. The molecular requirements for cytokinesis. Science 307, 1735–1739 (2005).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Saarikangas, J. & Barral, Y. The emerging functions of septins in metazoans. EMBO Rep. 12, 1118–1126 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Bertin, A. et al. Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. J. Mol. Biol. 404, 711–731 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Zhang, J. et al. Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr. Biol. 9, 1458–1467 (1999).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Field, C. M., Coughlin, M., Doberstein, S., Marty, T. & Sullivan, W. Characterization of anillin mutants reveals essential roles in septin localization and plasma membrane integrity. Development 132, 2849–2860 (2005).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Kinoshita, M., Field, C. M., Coughlin, M. L., Straight, A. F. & Mitchison, T. J. Self- and actin-templated assembly of mammalian septins. Dev. Cell 3, 791–802 (2002).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Oegema, K., Savoian, M. S., Mitchison, T. J. & Field, C. M. Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J. Cell Biol. 150, 539–552 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Joo, E., Surka, M. C. & Trimble, W. S. Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases. Dev. Cell 13, 677–690 (2007).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Mostowy, S. et al. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microb. 8, 433–444 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Schmidt, K. & Nichols, B. J. A barrier to lateral diffusion in the cleavage furrow of dividing mammalian cells. Curr. Biol. 14, 1002–1006 (2004).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Caudron, F. & Barral, Y. Septins and the lateral compartmentalization of eukaryotic membranes. Dev. Cell 16, 493–506 (2009).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Liu, J., Fairn, G. D., Ceccarelli, D. F., Sicheri, F. & Wilde, A. Cleavage furrow organization requires PIP(2)-mediated recruitment of anillin. Curr. Biol. 22, 64–69 (2012).

    Article  PubMed  Google Scholar 

  17. 17

    Kechad, A., Jananji, S., Ruella, Y. & Hickson, G. R. Anillin acts as a bifunctional linker coordinating midbody ring biogenesis during cytokinesis. Curr. Biol. 22, 197–203 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Adam, J. C., Pringle, J. R. & Peifer, M. Evidence for functional differentiation among Drosophila septins in cytokinesis and cellularization. Mol. Biol. Cell 11, 3123–3135 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Field, C. M. & Alberts, B. M. Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J. Cell Biol. 131, 165–178 (1995).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Lecuit, T. & Wieschaus, E. Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryo. J. Cell Biol. 150, 849–860 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Schejter, E. D. & Wieschaus, E. bottleneck acts as a regulator of the microfilament network governing cellularization of the Drosophila embryo. Cell 75, 373–385 (1993).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Thomas, J. H. & Wieschaus, E. src64 and tec29 are required for microfilament contraction during Drosophila cellularization. Development 131, 863–871 (2004).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Neufeld, T. P. & Rubin, G. M. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell 77, 371–379 (1994).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Field, C. M. et al. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol. 133, 605–616 (1996).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Royou, A., Field, C., Sisson, J. C., Sullivan, W. & Karess, R. Reassessing the role and dynamics of nonmuscle myosin II during furrow formation in early Drosophila embryos. Mol. Biol. Cell 15, 838–850 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Fullilove, S. L. & Jacobson, A. G. Nuclear elongation and cytokinesis in Drosophila montana. Dev. Biol. 26, 560–577 (1971).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Carvalho, A., Desai, A. & Oegema, K. Structural memory in the contractile ring makes the duration of cytokinesis independent of cell size. Cell 137, 926–937 (2009).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Padash Barmchi, M., Rogers, S. & Hacker, U. DRhoGEF2 regulates actin organization and contractility in the Drosophila blastoderm embryo. J. Cell Biol. 168, 575–585 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Grosshans, J. et al. RhoGEF2 and the formin Dia control the formation of the furrow canal by directed actin assembly during Drosophila cellularisation. Development 132, 1009–1020 (2005).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Wenzl, C., Yan, S., Laupsien, P. & Grosshans, J. Localization of RhoGEF2 during Drosophila cellularization is developmentally controlled by Slam. Mech. Dev. 127, 371–384 (2010).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Zhang, L. & Ward, R. E. Distinct tissue distributions and subcellular localizations of differently phosphorylated forms of the myosin regulatory light chain in Drosophila. Gene Expression Patterns 11, 93–104 (2011).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Kress, A. et al. Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy. Biophys. J. 105, 127–136 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Sirajuddin, M. et al. Structural insight into filament formation by mammalian septins. Nature 449, 311–315 (2007).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Garcia, G. 3rd. et al. Subunit-dependent modulation of septin assembly: budding yeast septin Shs1 promotes ring and gauze formation. J. Cell Biol. 195, 993–1004 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Farkasovsky, M., Herter, P., Voss, B. & Wittinghofer, A. Nucleotide binding and filament assembly of recombinant yeast septin complexes. Biol. Chem. 386, 643–656 (2005).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Weirich, C. S., Erzberger, J. P. & Barral, Y. The septin family of GTPases: architecture and dynamics. Nat. Rev. 9, 478–489 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Holmes, K. C. Structural biology: actin in a twist. Nature 457, 389–390 (2009).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Jansen, S. et al. Mechanism of actin filament bundling by fascin. J. Biol. Chem. 286, 30087–30096 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Faix, J. et al. Cortexillins, major determinants of cell shape and size, are actin-bundling proteins with a parallel coiled-coil tail. Cell 86, 631–642 (1996).

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Bertin, A. et al. Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proc. Natl Acad. Sci. USA 105, 8274–8279 (2008).

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Frazier, J. A. et al. Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J. Cell Biol. 143, 737–749 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Hickson, G. R. & O’Farrell, P. H. Rho-dependent control of anillin behavior during cytokinesis. J. Cell Biol. 180, 285–294 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    D’Avino, P. P. et al. Interaction between Anillin and RacGAP50C connects the actomyosin contractile ring with spindle microtubules at the cell division site. J. Cell Sci. 121, 1151–1158 (2008).

    Article  PubMed  Google Scholar 

  44. 44

    Estey, M. P., Di Ciano-Oliveira, C., Froese, C. D., Bejide, M. T. & Trimble, W. S. Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission. J. Cell Biol. 191, 741–749 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Gilden, J. K., Peck, S., Chen, Y. C. & Krummel, M. F. The septin cytoskeleton facilitates membrane retraction during motility and blebbing. J. Cell Biol. 196, 103–114 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Sedzinski, J. et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476, 462–466 (2011).

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Guillot, C. & Lecuit, T. Adhesion disengagement uncouples intrinsic and extrinsic forces to drive cytokinesis in epithelial tissues. Dev. Cell 24, 227–241 (2013).

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Founounou, N., Loyer, N. & Le Borgne, R. Septins regulate the contractility of the actomyosin ring to enable adherens junction remodelling during cytokinesis of epithelial cells. Dev. Cell 24, 242–255 (2013).

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Mostowy, S. et al. A role for septins in the interaction between the Listeria monocytogenes INVASION PROTEIN InlB and the Met receptor. Biophys. J. 100, 1949–1959 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Tooley, A. J. et al. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat. Cell Biol. 11, 17–26 (2009).

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Dagdas, Y. F. et al. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336, 1590–1595 (2012).

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Pan, F., Malmberg, R. L. & Momany, M. Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol. Biol. 7, 103 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Sellin, M. E., Sandblad, L., Stenmark, S. & Gullberg, M. Deciphering the rules governing assembly order of mammalian septin complexes. Mol. Biol. Cell 22, 3152–3164 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Kim, M. S., Froese, C. D., Estey, M. P. & Trimble, W. S. SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission. J. Cell Biol. 195, 815–826 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993).

    CAS  Article  PubMed  Google Scholar 

  56. 56

    Tang, J. X., Kas, J. A., Shah, J. V. & Janmey, P. A. Counterion-induced actin ring formation. Eur. Biophys. J. 30, 477–484 (2001).

    CAS  Article  PubMed  Google Scholar 

  57. 57

    Taylor, K. A., Taylor, D. W. & Schachat, F. Isoforms of α-actinin from cardiac, smooth, and skeletal muscle form polar arrays of actin filaments. J. Cell Biol. 149, 635–646 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Surka, M. C., Tsang, C. W. & Trimble, W. S. The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol. Biol. Cell 13, 3532–3545 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Kinoshita, M. et al. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev. 11, 1535–1547 (1997).

    CAS  Article  PubMed  Google Scholar 

  60. 60

    Mostowy, S. & Cossart, P. Septins: the fourth component of the cytoskeleton. Nature reviews. Mol. Cell Biol. 13, 183–194 (2012).

    CAS  Article  Google Scholar 

  61. 61

    Lecuit, T. & Pilot, F. Developmental control of cell morphogenesis: a focus on membrane growth. Nat. Cell Biol. 5, 103–108 (2003).

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Murthy, M., Teodoro, R. O., Miller, T. P. & Schwarz, T. L. Sec5, a member of the exocyst complex, mediates Drosophila embryo cellularization. Development 137, 2773–2783 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    Mavrakis, M., Rikhy, R. & Lippincott-Schwartz, J. Plasma membrane polarity and compartmentalization are established before cellularization in the fly embryo. Dev. Cell 16, 93–104 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64

    Rauzi, M., Lenne, P. F. & Lecuit, T. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468, 1110–1114 (2010).

    CAS  Article  Google Scholar 

  65. 65

    Mavrakis, M., Rikhy, R., Lilly, M. & Lippincott-Schwartz, J. in Current Protocols in Cell Biology (eds Bonifacino, J.S. et al.) (ed Bonifacino, J.S.et al.) Ch. 4, Unit 4.18 (John Wiley, (2008).

    Google Scholar 

  66. 66

    Levayer, R., Pelissier-Monier, A. & Lecuit, T. Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nat. Cell Biol. 13, 529–540 (2011).

    CAS  Article  PubMed  Google Scholar 

  67. 67

    Diebold, M. L., Fribourg, S., Koch, M., Metzger, T. & Romier, C. Deciphering correct strategies for multiprotein complex assembly by co-expression: application to complexes as large as the histone octamer. J. Struct. Biol. 175, 178–188 (2011).

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Pardee, J. D. & Spudich, J. A. Purification of muscle actin. Methods Enzymol. 85 Pt B, 164–181 (1982).

    CAS  Article  PubMed  Google Scholar 

  69. 69

    Pollard, T. D. A guide to simple and informative binding assays. Mol. Biol. Cell 21, 4061–4067 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    Gentry, B. S. et al. Multiple actin binding domains of Ena/VASP proteins determine actin network stiffening. Eur. Biophys. J. 41, 979–990 (2012).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Lecuit and Lenne groups for discussions and for providing a fruitful environment during the course of this work. We thank J-P. Chauvin, A. Aouane and F. Richard at the IBDM electron microscopy facility for help with embryo processing and image acquisition, G. Pehau-Arnaudet at Imagopole (Institut Pasteur) and the electron microscopy facility at Imagif (Gif sur Yvette) for technical help with imaging of in vitro actin–septin assemblies, P. Ferrand, X. Wang, J. Duboisset and H. Rigneault (Institut Fresnel) for their contribution in the implementation of polarization-resolved fluorescence microscopy, C. Romier and C. Fernández-Tornero for discussions on septin purification, F. Maina for key advice on phosphoprotein westerns, M. Kuit-Vinkenoog for G-actin purification, and A. Kamor and C. Chandre for Matlab and POV-ray code for drawing FC tori. M.M., Y.A-G. and F.I. were supported by the ANR Blanc ARCHIPLAST (T.L.), the Fondation pour la Recherche Medicale (équipe labelisée, T.L.), the Association pour la Recherche contre la Cancer (Programme ARC, SL220120605305) and the CNRS. M.M., A.B., F-C.T., J.A. and G.H.K. were supported by two PHC Van Gogh grants (no. 25005UA and no. 28879SJ, ministères des Affaires étrangères et de l’Enseignement supérieur et de la Recherche), and G.H.K., F-C.T. and J.A. were supported by a VIDI grant from NWO and by the Foundation for Fundamental Research on Matter (FOM). A.K. and S.B. were supported by the CNRS, the ANR BLANC grants 150902 (ReceptORIENT) and 18818 (RADORDER) and the region Provence Alpes Côte d’Azur. This work was supported by the national infrastructure France Bio-Imaging and the Nikon Application Center Marseille.

Author information

Affiliations

Authors

Contributions

Experiments were conceived and planned by M.M., G.H.K. and T.L. Experiments were performed by M.M., Y.A-G., F-C.T., J.A., A.B., F.I. and A.K. Data analysis was performed by M.M., Y.A-G., A.B., A.K. and S.B. M.M. wrote the first version of the manuscript, and T.L. and G.H.K. contributed to the writing of the final version. F-C.T., J.A., A.B. and S.B. contributed to the writing of the methods. All authors participated in the discussion of the data and in producing the final version of the manuscript.

Corresponding authors

Correspondence to Manos Mavrakis or Thomas Lecuit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 FC membrane polarity is not affected during cellularization of septin mutants.

a, b, Confocal images of DSep1 (a, left) and DSep2 (b, left) in a top view of the FC in a wild-type embryo. Side views of the FC in wild-type and septin mutant depicting the localization of the lateral membrane marker, Scb, and DSep1 (a, right) and Scb and DSep2 (b, right). (c) Confocal images of the lateral membrane marker, Dlg, and the FC membrane markers, DPatj, Slam and DRhoGEF2, in side views of the FC during the fast phase of wild-type and septin mutant embryos. Notice the flat morphology of FC membranes in mutants (arrowheads). d, Confocal images of DPatj and Dlg in a top view of the FC during the fast phase of wild-type and septin mutant embryos. A higher magnification of a FC in the mutant (dashed box) shows the segregation of Dlg and DPatj. e, Localization of myosin heavy chain (MHC), Pnut/hSep7 and DSep1 at the FC of septin mutant embryos. A higher magnification of the FC region is depicted on the right. f, Two-photon images of UtrCHD::GFP during cellularization of wild-type (top panel) and septin mutant (bottom panel). Scale bars, 5 μm.

Supplementary Figure 2 Defects in F-actin organization during cellularization of septin mutants.

a, c, d, Confocal images of Actin (phalloidin-stained) during the early slow phase (A, 1-3 depict three representative examples), the early fast phase (C, 1-2 depict two representative examples) and the late fast phase (D, right) of septin mutants. Actin in wild type embryos of the respective stages are shown in c and d, left for comparison. (b) Side view of FCs in a septin mutant stained for Actin, MHC and Pnut/hSep7. e, Quantification of FC perimeters from segmentation analysis of wild-type (N=32–144 FCs/timepoint/embryo) embryos. All the N numbers of FCs per timepoint per embryo are provided in Supplementary Table 1. Constriction rates are calculated from linear regression analysis in the regions depicted by the two black line segments. Error bars are mean ± s.d. f, Definition of circularity. Scale bars, 5 μm.

Supplementary Figure 3 Electron microscopy of FCs in wild-type and septin mutants.

(a) Electron micrograph of a FC section depicting how measurements of FC coat densities (quantified in Fig. 4g) were performed. I, Mean pixel intensity. (b) Examples of FC sections in wild-type and septin mutants at low magnification. (c) Electron micrograph of grazing sections through the side of a FC in a wild-type (left) and a septin mutant (right). The schematic depicts the grazing sections with respect to the FC geometry. Dashed black lines follow the FC membrane contour. White guidelines in wild-type are oriented parallel to the observed arrays of filaments. d, Electron micrograph of a top view of a wild-type FC depicting the curved electron-dense coat (white brackets) at the membrane e, Electron micrograph of a grazing section through the base of a wild-type FC. White guidelines are oriented parallel to the observed arrays of filaments.

Supplementary Figure 4 In vitro reconstituted actin filaments are bundled in the presence of septins.

a, b SDS-PAGE analysis (Coomassie blue stained) of fractions from low speed co-sedimentation of 1 μM F-actin co-polymerized with the indicated concentrations of Fascin (a) or Drosophila septins (b). T, total. S, supernatant. P, pellet.

Supplementary Figure 5 Characterization of DSep1 and DSep2 antibodies generated in this study.

a, b, Homology models of DSep1 (a) and DSep2 (b) structures depicting in red the amino acid (aa) sequence and respective regions in the structure that were used as epitopes for antibody production. c, d, Western blot of purified recombinant septin complexes (c) and wild-type embryo lysates (d) using the DSep1 and DSep2 antibodies generated in this study. e, SDS-PAGE analysis of recombinant septin complexes of His6-hSep2, hSep6 and hSep7-Strep.

Supplementary Figure 6 Representative entire images of immunoblotting and SDS-PAGE.

Boxed areas were cropped for designated figures. Dotted lines denote separations of membranes for dual labeling.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1032 kb)

Supplementary Table 1

Supplementary Information (XLSX 40 kb)

Side view of membrane invagination during cellularization in a MRLC::GFP expressing wild-type and septin mutant embryo, imaged with two-photon microscopy.

Time interval between acquired frames was 2 min and the acquisition length was 90 min (wild-type) and 98 min (mutant). Video is 706 × faster than real-time. (MOV 825 kb)

Top view of a MRLC::GFP expressing wild-type and septin mutant embryo during the slow phase of cellularization.

Images were collected at the FC with spinning disk confocal microscopy. Time interval between acquired frames was 10 s and the acquisition length was 44 min. Video is 149 × faster than real-time. (MOV 11781 kb)

Time-lapse imaging of actin bundle formation in the presence of 0.1 μM fly septins.

Time interval between acquired frames was 0.5 s and the acquisition length was 5 min. Video is 7.5 × faster than real-time. (MOV 8893 kb)

Time-lapse imaging of thermally undulating single actin filaments.

Time interval between acquired frames was 0.5 s and the acquisition length was 1 min. Video is 7.5 × faster than real-time. (MOV 889 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mavrakis, M., Azou-Gros, Y., Tsai, FC. et al. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat Cell Biol 16, 322–334 (2014). https://doi.org/10.1038/ncb2921

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing