Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stable RNA interference rules for silencing

Abstract

RNA interference has become an indispensable tool for loss-of-function studies across eukaryotes. By enabling stable and reversible gene silencing, shRNAs provide a means to study long-term phenotypes, perform pool-based forward genetic screens and examine the consequences of temporary target inhibition in vivo. However, efficient implementation in vertebrate systems has been hindered by technical difficulties affecting potency and specificity. Focusing on these issues, we analyse current strategies to obtain maximal knockdown with minimal off-target effects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Discovery and development of RNA interference (RNAi).
Figure 2: Endogenous RNAi pathways and their use as tools for gene silencing.
Figure 3: Best practices for efficient and specific stable RNAi.
Figure 4: Ramifications of off-target effects.

References

  1. 1

    Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Hannon, G. J. RNA interference. Nature 418, 244–251 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Bartel, D. P. MicroRNAs: Target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    McManus, M. T., Petersen, C. P., Haines, B. B., Chen, J. & Sharp, P. A. Gene silencing using micro-RNA designed hairpins. RNA 8, 842–850 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Zeng, Y., Wagner, E. J. & Cullen, B. R. Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Silva, J. M. et al. Second-generation shRNA libraries covering the mouse and human genome. Nat. Genet. 37, 1281–1288 (2005).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Chung, K. H. et al. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res. 34, e53 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13

    Ely, A., Naidoo, T., Mufamadi, S., Crowther, C. & Arbuthnot, P. Expressed anti-HBV primary microRNA shuttles inhibit viral replication efficiently in vitro and in vivo. Mol. Ther. 16, 1105–1112 (2008).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Aagaard, L. A. et al. Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Ther. 15, 1536–1549 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Liu, Y. P., Haasnoot, J., ter Brake, O., Berkhout, B. & Konstantinova, P. Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res. 36, 2811–2824 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    McBride, J. L. et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc. Natl Acad. Sci. USA 105, 5868–5873 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Boudreau, R. L., Martins, I. & Davidson, B. L. Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol. Ther. 17, 169–175 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18

    Castanotto, D. et al. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res. 35, 5154–5164, (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J. & Elledge, S. J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA 102, 13212–13217 (2005).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Fellmann, C. et al. Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol. Cell 41, 733–746 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Reynolds, A. et al. Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Huesken, D. et al. Design of a genome-wide siRNA library using an artificial neural network. Nat. Biotechnol. 23, 995–1001 (2005).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Vert, J. P., Foveau, N., Lajaunie, C. & Vandenbrouck, Y. An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinformatics 7, 520 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30

    Birmingham, A. et al. A protocol for designing siRNAs with high functionality and specificity. Nat. Protoc. 2, 2068–2078 (2007).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Pei, Y. & Tuschl, T. On the art of identifying effective and specific siRNAs. Nat. Methods 3, 670–676 (2006).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Taxman, D. J. et al. Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol. 6, 7 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33

    Bassik, M. C. et al. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat. Methods 6, 443–445 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Du, Q., Thonberg, H., Zhang, H. Y., Wahlestedt, C. & Liang, Z. Validating siRNA using a reporter made from synthetic DNA oligonucleotides. Biochem. Biophys. Res. Commun. 325, 243–249 (2004).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Kumar, R., Conklin, D. S. & Mittal, V. High-throughput selection of effective RNAi probes for gene silencing. Genome Res. 13, 2333–2340 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Mayr, C. & Bartel, D. P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. B. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Tan, X. et al. Tiling genomes of pathogenic viruses identifies potent antiviral shRNAs and reveals a role for secondary structure in shRNA efficacy. Proc. Natl Acad. Sci. USA 109, 869–874 (2012).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Naito, Y. & Ui-Tei, K. siRNA design software for a target gene-specific RNA interference. Front. Genet. 3, 102 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Matveeva, O. V., Nazipova, N. N., Ogurtsov, A. Y. & Shabalina, S. A. Optimized models for design of efficient miR30-based shRNAs. Front. Genet. 3, 163 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Kaelin, W. G. Jr. Use and abuse of RNAi to study mammalian gene function. Science 337, 421–422 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Jackson, A. L. & Linsley, P. S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 9, 57–67 (2010).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Semizarov, D. et al. Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl Acad. Sci. USA 100, 6347–6352 (2003).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Yi, R., Doehle, B. P., Qin, Y., Macara, I. G. & Cullen, B. R. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 11, 220–226 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Khan, A. A. et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat. Biotechnol. 27, 549–555 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Premsrirut, P. K. et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145, 145–158 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Gu, S. et al. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of Dicer processing in vivo. Cell 151, 900–911 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Moffat, J. & Sabatini, D. M. Building mammalian signalling pathways with RNAi screens. Nat. Rev. Mol. Cell Biol. 7, 177–187 (2006).

    CAS  Article  Google Scholar 

  51. 51

    Ngo, V. N. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441, 106–110 (2006).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Westbrook, T. F. et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 121, 837–848 (2005).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Solimini, N. L. et al. Recurrent hemizygous deletions in cancers may optimize proliferative potential. Science 337, 104–109 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Meacham, C. E., Ho, E. E., Dubrovsky, E., Gertler, F. B. & Hemann, M. T. In vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression. Nat. Genet. 41, 1133–1137 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl Acad. Sci. USA 108, 12372–12377 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Conrad, C. & Gerlich, D. W. Automated microscopy for high-content RNAi screening. J. Cell Biol. 188, 453–461 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Sigoillot, F. D. et al. A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens. Nat. Methods 9, 363–366 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Shao, D. D. et al. ATARiS: computational quantification of gene suppression phenotypes from multisample RNAi screens. Genome Res. 23, 665–678 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Schmidt, E. E. et al. GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update. Nucleic Acids Res. 41, D1021–D1026 (2013).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Bassik, M. C. et al. A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 152, 909–922 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models. Nat. Rev. Cancer 7, 645–658 (2007).

    CAS  Article  Google Scholar 

  64. 64

    Schmitt, C. A., Rosenthal, C. T. & Lowe, S. W. Genetic analysis of chemoresistance in primary murine lymphomas. Nat. Med. 6, 1029–1035 (2000).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Zuber, J. et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 23, 877–889 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Zuber, J. et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev. 25, 1628–1640 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Beard, C., Hochedlinger, K., Plath, K., Wutz, A. & Jaenisch, R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis 44, 23–28 (2006).

    CAS  Article  Google Scholar 

  68. 68

    Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Dickins, R. A. et al. Tissue-specific and reversible RNA interference in transgenic mice. Nat Genet 39, 914–921 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Hitz, C., Steuber-Buchberger, P., Delic, S., Wurst, W. & Kuhn, R. Generation of shRNA transgenic mice. Methods Mol. Biol. 530, 101–129 (2009).

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Peng, S., York, J. P. & Zhang, P. A transgenic approach for RNA interference-based genetic screening in mice. Proc. Natl Acad. Sci. USA 103, 2252–2256 (2006).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    McJunkin, K. et al. Reversible suppression of an essential gene in adult mice using transgenic RNA interference. Proc. Natl Acad. Sci. USA 108, 7113–7118 (2011).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Dow, L. E. & Lowe, S. W. Life in the fast lane: mammalian disease models in the genomics era. Cell 148, 1099–1109 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Lin, C. J. et al. Targeting synthetic lethal interactions between Myc and the eIF4F complex impedes tumorigenesis. Cell Rep. 1, 325–333 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Hemann, M. T. et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat. Genet. 33, 396–400 (2003).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852–864 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Bric, A. et al. Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell 16, 324–335 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Scuoppo, C. et al. A tumour suppressor network relying on the polyamine-hypusine axis. Nature 487, 244–248 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Xue, W. et al. A cluster of cooperating tumor-suppressor gene candidates in chromosomal deletions. Proc. Natl Acad. Sci. USA 109, 8212–8217 (2012).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83

    Miller, P. G. et al. In vivo RNAi screening identifies a leukemia-specific dependence on integrin beta 3 signaling. Cancer Cell 24, 45–58 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Wuestefeld, T. et al. A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. Cell 153, 389–401 (2013).

    CAS  Article  Google Scholar 

  85. 85

    Zuber, J. et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat. Biotechnol. 29, 79–83 (2011).

    CAS  Article  Google Scholar 

  86. 86

    Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Forstemann, K., Horwich, M. D., Wee, L., Tomari, Y. & Zamore, P. D. Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130, 287–297 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88

    Betancur, J. G., Yoda, M. & Tomari, Y. miRNA-like duplexes as RNAi triggers with improved specificity. Front. Genet. 3, 127 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Cleary, M. A. et al. Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nat. Methods 1, 241–248 (2004).

    CAS  PubMed  Article  Google Scholar 

  90. 90

    Loewer, S. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 42, 1113–1117 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Wang, Y. et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell 25, 69–80 (2013).

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Castel, S. E. & Martienssen, R. A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 14, 100–112 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93

    Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    van der Krol, A. R., Mur, L. A., Beld, M., Mol, J. N. & Stuitje, A. R. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2, 291–299 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  Article  Google Scholar 

  97. 97

    Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98

    Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–357 (1969).

    CAS  PubMed  Article  Google Scholar 

  99. 99

    Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    CAS  PubMed  Article  Google Scholar 

  101. 101

    Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102

    Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    CAS  PubMed  Article  Google Scholar 

  103. 103

    Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104

    Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105

    Aravin, A. A., Hannon, G. J. & Brennecke, J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318, 761–764 (2007).

    CAS  PubMed  Article  Google Scholar 

  106. 106

    Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107

    Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    CAS  Article  Google Scholar 

  108. 108

    Basyuk, E., Suavet, F., Doglio, A., Bordonne, R. & Bertrand, E. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res. 31, 6593–6597 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109

    Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112

    Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113

    Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).

    CAS  Article  Google Scholar 

  114. 114

    Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    CAS  Article  Google Scholar 

  115. 115

    Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    CAS  Article  Google Scholar 

  116. 116

    Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118

    Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119

    Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120

    Leuschner, P. J., Ameres, S. L., Kueng, S. & Martinez, J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. 7, 314–320 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121

    Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122

    Rand, T. A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123

    Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    CAS  Article  Google Scholar 

  124. 124

    Zeng, Y., Yi, R. & Cullen, B. R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl Acad. Sci. USA 100, 9779–9784 (2003).

    CAS  PubMed  Article  Google Scholar 

  125. 125

    Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    CAS  PubMed  Article  Google Scholar 

  126. 126

    Doench, J. G., Petersen, C. P. & Sharp, P. A. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127

    Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128

    Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    CAS  Article  Google Scholar 

  129. 129

    Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599–606 (2004).

    CAS  PubMed  Article  Google Scholar 

  130. 130

    Auyeung, V. C., Ulitsky, I., McGeary, S. E. & Bartel, D. P. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152, 844–858 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131

    Fellmann, C. et al. An optimized microRNA backbone for effective single-copy RNAi. Cell Rep. http://dx.doi.org/10.1016/j.celrep.2013.11.020 (2013).

  132. 132

    Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133

    Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    CAS  Article  Google Scholar 

  134. 134

    Cheloufi, S., Dos Santos, C. O., Chong, M. M. & Hannon, G. J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135

    Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136

    Yang, J. S. et al. Conserved vertebrate miR-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl Acad. Sci. USA 107, 15163–15168 (2010).

    CAS  Article  Google Scholar 

  137. 137

    Kumar, M. S. et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev. 23, 2700–2704 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank G. J. Hannon, S. J. Elledge and J. Zuber for continuous support and valuable discussions on state-of-the-art RNAi. We also thank S. Mayack for critical reading of the manuscript and apologize to authors whose work was not cited owing to space constraints. S.W.L. is an investigator of the Howard Hughes Medical Institute.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Scott W. Lowe.

Ethics declarations

Competing interests

C.F. and S.W.L. are founders of Mirimus Inc., and C.F. is an employee of Mirimus Inc., a company that has licensed some of the shRNA technology discussed in this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fellmann, C., Lowe, S. Stable RNA interference rules for silencing. Nat Cell Biol 16, 10–18 (2014). https://doi.org/10.1038/ncb2895

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing