A cost–benefit analysis of the physical mechanisms of membrane curvature

Abstract

Many cellular membrane-bound structures exhibit distinct curvature that is driven by the physical properties of their lipid and protein constituents. Here we review how cells manipulate and control this curvature in the context of dynamic events such as vesicle-mediated membrane traffic. Lipids and cargo proteins each contribute energy barriers that must be overcome during vesicle formation. In contrast, protein coats and their associated accessory proteins drive membrane bending using a variety of interdependent physical mechanisms. We survey the energy costs and drivers involved in membrane curvature, and draw a contrast between the stochastic contributions of molecular crowding and the deterministic assembly of protein coats. These basic principles also apply to other cellular examples of membrane bending events, including important disease-related problems such as viral egress.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cellular sites of membrane curvature.
Figure 2: Steric effects during membrane curvature.
Figure 3: Energetics of coated vesicle formation.

References

  1. 1

    McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005).

  2. 2

    Bigay, J. & Antonny, B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23, 886–895 (2012).

  3. 3

    Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006).

  4. 4

    Canham, P. B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theoret. Biol. 26, 61–81 (1970).

  5. 5

    Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Biochem. Biophys. Biol. Virol. 28, 693–703 (1973).

  6. 6

    Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nat. Cell Biol. 11, 1039–1042 (2009).

  7. 7

    Boulant, S., Kural, C., Zeeh, J. C., Ubelmann, F. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13, 1124–1131 (2011).

  8. 8

    Svetina, S. & Zeks, B. Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur. Biophys. J. 17, 101–111 (1989).

  9. 9

    Fuller, N. & Rand, R. P. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 81, 243–254 (2001).

  10. 10

    Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

  11. 11

    Fujita, M. & Kinoshita, T. GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim. Biophys. Acta 1821, 1050–1058 (2012).

  12. 12

    Sheetz, M. P. & Singer, S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl Acad. Sci. USA 71, 4457–4461 (1974).

  13. 13

    Decher, G. et al. Interaction of amphiphilic polymers with model membranes. Angew. Makromol. Chem. 166, 71–80 (1989).

  14. 14

    Stachowiak, J. C., Hayden, C. C. & Sasaki, D. Y. Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proc. Natl Acad. Sci. USA 107, 7781–7786 (2010).

  15. 15

    Copic, A., Latham, C. F., Horlbeck, M. A., D'Arcangelo, J. G. & Miller, E. A. ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science 335, 1359–1362 (2012).

  16. 16

    Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169 (2010).

  17. 17

    Roth, T. F. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L. J. Cell Biol. 20, 313–332 (1964).

  18. 18

    Pearse, B. M. & Crowther, R. A. Structure and assembly of coated vesicles. Annu. Rev. Biophys. Biophys. Chem. 16, 49–68 (1987).

  19. 19

    Thomas, P. D. & Poznansky, M. J. Curvature and composition-dependent lipid asymmetry in phosphatidylcholine vesicles containing phosphatidylethanolamine and gangliosides. Biochim. Biophys. Acta 978, 85–90 (1989).

  20. 20

    Goni, F. M. & Alonso, A. Biophysics of sphingolipids, I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim. Biophys. Acta 1758, 1902–1921 (2006).

  21. 21

    Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656–667 (2010).

  22. 22

    Yang, J. S. et al. A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nat. Cell Biol. 10, 1146–1153 (2008).

  23. 23

    Gall, W. E. et al. Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Curr. Biol. 12, 1623–1627 (2002).

  24. 24

    Zha, X. et al. Sphingomyelinase treatment induces ATP-independent endocytosis. J. Cell Biol. 140, 39–47 (1998).

  25. 25

    Leibler, S. Curvature instability in membranes. J. Phys. 47, 507–516 (1986).

  26. 26

    Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

  27. 27

    Lee, M. C. S. et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122, 605–617 (2005).

  28. 28

    Lundmark, R., Doherty, G. J., Vallis, Y., Peter, B. J. & McMahon, H. T. Arf family GTP loading is activated by, and generates, positive membrane curvature. Biochem. J. 414, 189–194 (2008).

  29. 29

    Krauss, M. et al. Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J. Biol. Chem. 283, 27717–27723 (2008).

  30. 30

    Campelo, F., McMahon, H. T. & Kozlov, M. M. The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys. J. 95, 2325–2339 (2008).

  31. 31

    Stachowiak, J. C. et al. Membrane bending by protein-protein crowding. Nat. Cell Biol. 14, 944–949 (2012).

  32. 32

    Dannhauser, P. N. & Ungewickell, E. J. Reconstitution of clathrin-coated bud and vesicle formation with minimal components. Nat. Cell Biol. 14, 634–639 (2012).

  33. 33

    Settles, E. I., Loftus, A. F., McKeown, A. N. & Parthasarathy, R. The vesicle trafficking protein Sar1 lowers lipid membrane rigidity. Biophys. J. 99, 1539–1545 (2010).

  34. 34

    Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003).

  35. 35

    Tsafrir, I., Caspi, Y., Guedeau-Boudeville, M. A., Arzi, T. & Stavans, J. Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys. Rev. Lett. 91, 138102 (2003).

  36. 36

    Lipowsky, R. Bending of membranes by anchored polymers. Europhys. Lett. 30, 197–202 (1995).

  37. 37

    Kim, Y. W. & Sung, W. Y. Membrane curvature induced by polymer adsorption. Phys. Rev. E 63, 041910 (2001).

  38. 38

    Imjeti, N. S. et al. N-Glycosylation instead of cholesterol mediates oligomerization and apical sorting of GPI-APs in FRT cells. Mol. Biol. Cell 22, 4621–4634 (2011).

  39. 39

    Tooze, S. A., Martens, G. J. & Huttner, W. B. Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol. 11, 116–122 (2001).

  40. 40

    Vennema, H. et al. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 15, 2020–2028 (1996).

  41. 41

    Wang, C. W., Hamamoto, S., Orci, L. & Schekman, R. Exomer: A coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast. J. Cell Biol. 174, 973–983 (2006).

  42. 42

    Shibata, Y. et al. The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J. Biol. Chem. 283, 18892–18904 (2008).

  43. 43

    Walser, P. J. et al. Constitutive formation of caveolae in a bacterium. Cell 150, 752–763 (2012).

  44. 44

    Hu, J. et al. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319, 1247–1250 (2008).

  45. 45

    Stagg, S. M. et al. Structure of the Sec13/31 COPII coat cage. Nature 439, 234–238 (2006).

  46. 46

    Faini, M. et al. The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions. Science 336, 1451–1454 (2012).

  47. 47

    Darsow, T., Katzmann, D. J., Cowles, C. R. & Emr, S. D. Vps41p function in the alkaline phosphatase pathway requires homo-oligomerization and interaction with AP-3 through two distinct domains. Mol. Biol. Cell 12, 37–51 (2001).

  48. 48

    Bielli, A. et al. Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J. Cell Biol. 171, 919–924 (2005).

  49. 49

    Brodsky, F. M. Diversity of clathrin function: new tricks for an old protein. Annu. Rev. Cell Dev. Biol. 28, 309–336 (2012).

  50. 50

    Luo, Y., Zhan, Y. & Keen, J. H. Arf6 regulation of gyrating-clathrin. Traffic 14, 97–106 (2012).

  51. 51

    Wakeham, D. E., Chen, C. Y., Greene, B., Hwang, P. K. & Brodsky, F. M. Clathrin self-assembly involves coordinated weak interactions favorable for cellular regulation. EMBO J. 22, 4980–4990 (2003).

  52. 52

    Den Otter, W. K. & Briels, W. J. The generation of curved clathrin coats from flat plaques. Traffic 12, 1407–1416 (2011).

  53. 53

    Nossal, R. Energetics of clathrin basket assembly. Traffic 2, 138–147 (2001).

  54. 54

    Antonny, B., Madden, D., Hamamoto, S., Orci, L. & Schekman, R. Dynamics of the COPII coat with GTP and stable analogues. Nat. Cell Biol. 3, 531–537 (2001).

  55. 55

    Townley, A. K. et al. Efficient coupling of Sec23–Sec24 to Sec13–Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development. J. Cell Sci. 121, 3025–3034 (2008).

  56. 56

    Malhotra, V. & Erlmann, P. Protein export at the ER: loading big collagens into COPII carriers. EMBO J. 30, 3475–3480 (2011).

  57. 57

    Huang, F. & Sorkin, A. Growth factor receptor binding protein 2-mediated recruitment of the RING domain of Cbl to the epidermal growth factor receptor is essential and sufficient to support receptor endocytosis. Mol. Biol. Cell 16, 1268–1281 (2005).

  58. 58

    Ferreira, F. et al. Endocytosis of G protein-coupled receptors is regulated by clathrin light chain phosphorylation. Curr. Biol. 22, 1361–1370 (2012).

  59. 59

    Kukulski, W., Schorb, M., Kaksonen, M. & Briggs, J. A. G. Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell 150, 508–520 (2012).

  60. 60

    Collins, A., Warrington, A., Taylor, K. A. & Svitkina, T. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr. Biol. 21, 1167–1175 (2011).

  61. 61

    Idrissi, F. Z., Blasco, A., Espinal, A. & Geli, M. I. Ultrastructural dynamics of proteins involved in endocytic budding. Proc. Natl Acad. Sci. USA 109, E2587–2594 (2012).

  62. 62

    Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1, 161–171 (2000).

  63. 63

    Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol. 7, e1000191 (2009).

  64. 64

    Bonazzi, M. et al. Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization. J. Cell Biol. 195, 525–536 (2011).

  65. 65

    Cureton, D. K., Massol, R. H., Whelan, S. P. & Kirchhausen, T. The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog. 6, e1001127 (2010).

  66. 66

    Hansen, C. G. & Nichols, B. J. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol. 20, 177–186 (2010).

  67. 67

    Karpova, T. S. et al. Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae. Mol. Biol. Cell 11, 1727–1737 (2000).

  68. 68

    Zech, T., Calaminus, S. D. & Machesky, L. M. Actin on trafficking: Could actin guide directed receptor transport? Cell Adh. Migr. 6, 476–481 (2012).

  69. 69

    Campelo, F. & Malhotra, V. Membrane fission: the biogenesis of transport carriers. Annu. Rev. Biochem. 81, 407–427 (2012).

  70. 70

    Ferguson, S. M. & De Camilli, P. Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol. 13, 75–88 (2012).

  71. 71

    Schmid, S. L. & Frolov, V. A. Dynamin: functional design of a membrane fission catalyst. Annu. Rev. Cell Dev. Biol. 27, 79–105 (2011).

  72. 72

    Boucrot, E. et al. Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 149, 124–136 (2012).

  73. 73

    Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D. & Evans, E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000).

  74. 74

    Evans, E. & Rawicz, W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. Lett. 64, 2094–2097 (1990).

  75. 75

    Van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

  76. 76

    Hochmuth, F. M., Shao, J. Y., Dai, J. & Sheetz, M. P. Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys. J. 70, 358–369 (1996).

  77. 77

    Liu, J., Kaksonen, M., Drubin, D. G. & Oster, G. Endocytic vesicle scission by lipid phase boundary forces. Proc. Natl Acad. Sci. USA 103, 10277–10282 (2006).

  78. 78

    Sankaranarayanan, S., Atluri, P. P. & Ryan, T. A. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat. Neurosci. 6, 127–135 (2003).

  79. 79

    Cocucci, E., Aguet, F., Boulant, S. & Kirchhausen, T. The first five seconds in the life of a clathrin-coated pit. Cell 150, 495–507 (2012).

  80. 80

    Mehlert, A., Wormald, M. R. & Ferguson, M. A. Modeling of the N-glycosylated transferrin receptor suggests how transferrin binding can occur within the surface coat of Trypanosoma brucei. PLoS Pathog. 8, e1002618 (2012).

  81. 81

    Zhang, F., Zang, T., Wilson, S. J., Johnson, M. C. & Bieniasz, P. D. Clathrin facilitates the morphogenesis of retrovirus particles. PLoS Pathog. 7, e1002119 (2011).

  82. 82

    Johnson, D. C. & Baines, J. D. Herpesviruses remodel host membranes for virus egress. Nat. Rev. Microbiol. 9, 382–394 (2011).

  83. 83

    Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).

  84. 84

    Hierro, A. et al. Functional architecture of the retromer cargo-recognition complex. Nature 449, 1063–1067 (2007).

  85. 85

    Tanaka-Takiguchi, Y., Kinoshita, M. & Takiguchi, K. Septin-mediated uniform bracing of phospholipid membranes. Curr. Biol. 19, 140–145 (2009).

  86. 86

    Effantin, G. et al. ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding. Cell. Microbiol. 15, 213–226 (2013).

  87. 87

    Carnahan, N. F. & Starling, K. E. Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635 (1969).

  88. 88

    Song, Y. H., Mason, E. A. & Stratt, R. M. Why does the Carnahan-Starling equation work so well. J. Phys Chem 93, 6916–6919 (1989).

  89. 89

    Scheve, C. S., Gonzales, P. A., Momin, N. & Stachowiak, J. C. Steric pressure between membrane-bound proteins opposes lipid phase separation. J. Am. Chem. Soc. 135, 1185–1188 (2013).

  90. 90

    Blondeau, F. et al. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc. Natl Acad. Sci. USA 101, 3833–3838 (2004).

Download references

Acknowledgements

J.C.S. acknowledges funding from the University of Texas Austin Cockrell School of Engineering and the Texas 4000 Cancer Seed Grant Program. F.M.B. and E.A.M. acknowledge support from the National Institute of General Medical Science of the National Institutes of Health under award numbers R01GM038093 (F.M.B.), R01GM078186 (E.A.M.) and R01GM085089 (E.A.M.). We thank M. C. S. Lee (Columbia University), E. Schmid (University of California, Berkeley), C. Hayden (Sandia National Laboratories) and E. Lafer (University of Texas Health Science Center) for thoughtful discussions and comments on the manuscript.

Author information

Correspondence to Elizabeth A. Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stachowiak, J., Brodsky, F. & Miller, E. A cost–benefit analysis of the physical mechanisms of membrane curvature. Nat Cell Biol 15, 1019–1027 (2013) doi:10.1038/ncb2832

Download citation

Further reading