Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MUS81 promotes common fragile site expression

Abstract

Fragile sites are chromosomal loci with a propensity to form gaps or breaks during early mitosis, and their instability is implicated as being causative in certain neurological disorders and cancers1. Recent work has demonstrated that the so-called common fragile sites (CFSs) often impair the faithful disjunction of sister chromatids in mitosis2. However, the mechanisms by which CFSs express their fragility, and the cellular factors required to suppress CFS instability, remain largely undefined. Here, we report that the DNA structure-specific nuclease MUS81–EME1 localizes to CFS loci in early mitotic cells, and promotes the cytological appearance of characteristic gaps or breaks observed at CFSs in metaphase chromosomes. These data indicate that CFS breakage is an active, MUS81–EME1-dependent process, and not a result of inadvertent chromatid rupturing during chromosome condensation. Moreover, CFS cleavage by MUS81–EME1 promotes faithful sister chromatid disjunction. Our findings challenge the prevailing view that CFS breakage is a nonspecific process that is detrimental to cells, and indicate that CFS cleavage actually promotes genome stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Replication fork restart is defective in MUS81-depleted cells.
Figure 2: MUS81 localizes to CFS loci and is required for fragile site breakage after low-dose aphidicolin treatment.
Figure 3: MUS81-depleted cells show excessive fragile-site-associated chromosome mis-segregation.
Figure 4: MUS81-depleted cells generate excessive CFS-associated UFBs and 53BP1 nuclear bodies.
Figure 5: Model for the role of MUS81–EME1 in preserving genome integrity at CFSs.

Similar content being viewed by others

References

  1. Debacker, K. & Kooy, R. F. Fragile sites and human disease. Hum. Mol. Genet. 16, R150–R158 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Chan, K. L., Palmai-Pallag, T., Ying, S. & Hickson, I. D. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat. Cell Biol. 11, 753–760 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Durkin, S. G. & Glover, T. W. Chromosome fragile sites. Annu. Rev. Genet. 41, 169–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Arlt, M. F., Casper, A. M. & Glover, T. W. Common fragile sites. Cytogenet. Genome Res. 100, 92–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Burrow, A. A., Marullo, A., Holder, L. R. & Wang, Y. H. Secondary structure formation and DNA instability at fragile site FRA16B. Nucleic Acids Res. 38, 2865–2877 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Letessier, A. et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470, 120–123 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966–977 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Naim, V. & Rosselli, F. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat. Cell Biol. 11, 761–768 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Chan, K. L., North, P. S. & Hickson, I. D. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J. 26, 3397–3409 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baumann, C., Korner, R., Hofmann, K. & Nigg, E. A. PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128, 101–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Lukas, C. et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat. Cell Biol. 13, 243–253 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Harrigan, J. A. et al. Replication stress induces 53BP1-containing OPT domains in G1 cells. J. Cell Biol. 193, 97–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hanada, K. et al. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat. Struct. Mol Biol. 14, 1096–1104 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Davies, S. L., North, P. S. & Hickson, I. D. Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat. Struct. Mol. Biol. 14, 677–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ciccia, A., McDonald, N. & West, S. C. Structural and functional relationships of the XPF/MUS81 family of proteins. Annu. Rev. Biochem. 77, 259–287 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Ciccia, A., Constantinou, A. & West, S. C. Identification and characterizationof the human mus81-eme1 endonuclease. J. Biol. Chem. 278, 25172–25178 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Osman, F., Dixon, J., Doe, C. L. & Whitby, M. C. Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol. Cell 12, 761–774 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Boddy, M. N. et al. Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107, 537–548 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Whitby, M. C., Osman, F. & Dixon, J. Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4. J. Biol. Chem. 278, 6928–6935 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Doe, C. L., Ahn, J. S., Dixon, J. & Whitby, M. C. Mus81-Eme1 and Rqh1 involvement in processing stalled and collapsed replication forks. J. Biol. Chem. 277, 32753–32759 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Interthal, H. & Heyer, W. D. MUS81 encodes a novel helix-hairpin-helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae. Mol. Gen. Genet. 263, 812–827 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Boddy, M. N. et al. Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cds1. Mol. Cell Biol. 20, 8758–8766 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bastin-Shanower, S. A., Fricke, W. M., Mullen, J. R. & Brill, S. J. The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10. Mol. Cell Biol. 23, 3487–3496 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Forment, J. V., Blasius, M., Guerini, I. & Jackson, S. P. Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation. PLoS One 6, e23517 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wechsler, T., Newman, S. & West, S. C. Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature 471, 642–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gallo-Fernandez, M., Saugar, I., Ortiz-Bazan, M. A., Vazquez, M. V. & Tercero, J. A. Cell cycle-dependent regulation of the nuclease activity of Mus81-Eme1/Mms4. Nucleic Acids Res. 40, 8325–8335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ke, Y. et al. PICH and BLM limit histone association with anaphase centromeric DNA threads and promote their resolution. EMBO J. 30, 3309–3321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. El-Zein, R. A. et al. Cytokinesis-blocked micronucleus assay as a novel biomarker for lung cancer risk. Cancer Res. 66, 6449–6456 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Henry-Mowatt, J. et al. XRCC3 and Rad51 modulate replication fork progression on damaged vertebrate chromosomes. Mol. Cell 11, 1109–1117 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Savic, V. et al. Formation of dynamic gamma-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent on H2AX densities in chromatin. Mol. Cell 34, 298–310 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davies, S. L., North, P. S., Dart, A., Lakin, N. D. & Hickson, I. D. Phosphorylation of the Bloom’s syndrome helicase and its role in recovery from S-phase arrest. Mol. Cell Biol. 24, 1279–1291 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory is supported by Cancer Research UK, The Nordea Foundation, The Association of International Cancer Research, The Danish Cancer Society, and the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

S.Y., S.M., K.L.C., T.P-P., W.K.C., T.W. and Y.L. performed experimental work and data analysis. S.Y., S.M., K.L.C., H.W.M.,. Y.L. and I.D.H. planned the project and analysed data. S.Y., S.M., H.W.M., Y.L. and I.D.H. wrote the manuscript.

Corresponding authors

Correspondence to Songmin Ying or Ian D. Hickson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ying, S., Minocherhomji, S., Chan, K. et al. MUS81 promotes common fragile site expression. Nat Cell Biol 15, 1001–1007 (2013). https://doi.org/10.1038/ncb2773

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing