Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency

Abstract

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) involves a marked reorganization of chromatin. To identify post-translational histone modifications that change in global abundance during this process, we have applied a quantitative mass-spectrometry-based approach. We found that iPSCs, compared with both the starting fibroblasts and a late reprogramming intermediate (pre-iPSCs), are enriched for histone modifications associated with active chromatin, and depleted for marks of transcriptional elongation and a subset of repressive modifications including H3K9me2/me3. Dissecting the contribution of H3K9 methylation to reprogramming, we show that the H3K9 methyltransferases Ehmt1, Ehmt2 and Setdb1 regulate global H3K9me2/me3 levels and that their depletion increases iPSC formation from both fibroblasts and pre-iPSCs. Similarly, we find that inhibition of heterochromatin protein-1γ (Cbx3), a protein known to recognize H3K9 methylation, enhances reprogramming. Genome-wide location analysis revealed that Cbx3 predominantly binds active genes in both pre-iPSCs and pluripotent cells but with a strikingly different distribution: in pre-iPSCs, but not in embryonic stem cells, Cbx3 associates with active transcriptional start sites, suggesting a developmentally regulated role for Cbx3 in transcriptional activation. Despite largely non-overlapping functions and the predominant association of Cbx3 with active transcription, the H3K9 methyltransferases and Cbx3 both inhibit reprogramming by repressing the pluripotency factor Nanog. Together, our findings demonstrate that Cbx3 and H3K9 methylation restrict late reprogramming events, and suggest that a marked change in global chromatin character constitutes an epigenetic roadblock for reprogramming.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global levels of most histone PTMs differ between MEFs and iPSCs.
Figure 2: Comparison of histone PTM profiles between ESCs, iPSCs, pre-iPSCs and MEFs.
Figure 3: H3K9 methyltransferases, demethylases and methyl binders control the efficiency and kinetics of reprogramming.
Figure 4: Interference with H3K9 methyltransferases or Cbx3 induces reprogramming in pre-iPSCs.
Figure 5: Depletion of the H3K9 HMTases but not of Cbx3 induces a change in PTMs on the histone H3K9/K14 peptide in pre-iPSCs.
Figure 6: Depletion of H3K9 HMTases and Cbx3 promotes reprogramming of pre-iPSCs by inducing Nanog expression.
Figure 7: Cell-type-specific occupancy of Cbx3 at the TSS.
Figure 8: Cbx3 association with mediator components.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Plath, K. & Lowry, W. E. Progress in understanding reprogramming to the induced pluripotent state. Nat. Rev. Genet. 12, 253–265 (2011).

    Article  CAS  Google Scholar 

  2. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  3. Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).

    Article  CAS  Google Scholar 

  4. Ang, Y-S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).

    Article  CAS  Google Scholar 

  5. Gaspar-Maia, A. et al. Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460, 863–868 (2009).

    Article  CAS  Google Scholar 

  6. Singhal, N. et al. Chromatin-remodeling components of the baf complex facilitate reprogramming. Cell 141, 943–955 (2010).

    Article  CAS  Google Scholar 

  7. Wang, T. et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 9, 575–587 (2011).

    Article  CAS  Google Scholar 

  8. Liang, G., He, J. & Zhang, Y. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat. Cell Biol. 14, 457–466 (2012).

    Article  CAS  Google Scholar 

  9. Onder, T. T. et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483, 598–602 (2012).

    Article  CAS  Google Scholar 

  10. Chen, J. et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nature Genet. 45, 34–42 (2013).

    Article  CAS  Google Scholar 

  11. Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151, 994–1004 (2012).

    Article  CAS  Google Scholar 

  12. Mattout, A., Biran, A. & Meshorer, E. Global epigenetic changes during somatic cell reprogramming to iPS cells. J. Mol. Cell Biol. 3, 341–350 (2011).

    Article  Google Scholar 

  13. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  Google Scholar 

  14. Chin, M. H. et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5, 111–123 (2009).

    Article  CAS  Google Scholar 

  15. Sridharan, R. et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 136, 364–377 (2009).

    Article  CAS  Google Scholar 

  16. Garcia, B. A. et al. Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nat. Protoc. 2, 933–938 (2007).

    Article  CAS  Google Scholar 

  17. Plazas-Mayorca, M. D. et al. One-pot shotgun quantitative mass spectrometry characterization of histones. J. Proteome Res. 8, 5367–5374 (2009).

    Article  CAS  Google Scholar 

  18. Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897–903 (2008).

    Article  CAS  Google Scholar 

  19. Karmodiya, K. et al. H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genom. 13, 424 (2013).

    Article  Google Scholar 

  20. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    Article  CAS  Google Scholar 

  21. Xie, W. et al. Histone h3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells. Mol. Cell 33, 417–427 (2009).

    Article  CAS  Google Scholar 

  22. Wang, Y. et al. Histone H3 lysine 14 acetylation is required for activation of a DNA damage checkpoint in fission yeast. J. Biol. Chem. 287, 4386–4393 (2012).

    Article  CAS  Google Scholar 

  23. Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).

    Article  CAS  Google Scholar 

  24. Hiratani, I. et al. Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Gen. Res. 20, 155–169 (2010).

    Article  CAS  Google Scholar 

  25. Steger, D. J. et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol. Cell. Biol. 28, 2825–2839 (2008).

    Article  CAS  Google Scholar 

  26. Krogan, N. J. et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207–4218 (2003).

    Article  CAS  Google Scholar 

  27. Zee, B. M. et al. In vivo residue-specific histone methylation dynamics. J. Biol. Chem. 285, 3341–3350 (2010).

    Article  CAS  Google Scholar 

  28. Efroni, S. et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2, 437–447 (2008).

    Article  CAS  Google Scholar 

  29. Golipour, A. et al. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Stem Cell 11, 769–782 (2012).

    CAS  Google Scholar 

  30. Polo, J. M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012).

    Article  CAS  Google Scholar 

  31. Silva, J. et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 6, e253 (2008).

    Article  Google Scholar 

  32. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  Google Scholar 

  33. Lachner, M., O’Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  Google Scholar 

  34. Kwon, S. H. & Workman, J. L. The changing faces of HP1: from heterochromatin formation and gene silencing to euchromatic gene expression. Bioessays 33, 280–289 (2011).

    Article  CAS  Google Scholar 

  35. Smallwood, A. et al. CBX3 regulates efficient RNA processing genome-wide. Genome Res. 22, 1426–1436 (2012).

    Article  CAS  Google Scholar 

  36. Bilodeau, S., Kagey, M. H., Frampton, G. M., Rahl, P. B. & Young, R. A. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev. 23, 2484–2489 (2009).

    Article  CAS  Google Scholar 

  37. Yuan, P. et al. Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev. 23, 2507–2520 (2009).

    Article  CAS  Google Scholar 

  38. Cloos, P. A. C. et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307–311 (2006).

    Article  CAS  Google Scholar 

  39. Loh, Y. H., Zhang, W., Chen, X., George, J. & Ng, H. H. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 21, 2545–2557 (2007).

    Article  CAS  Google Scholar 

  40. Ma, D. K., Chiang, C-H. J., Ponnusamy, K., Ming, G-L. & Song, H. G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cell. 26, 2131–2141 (2008).

    Article  CAS  Google Scholar 

  41. Li, R. et al. A mesenchymal-to-epithelial transition initiates and is requiredfor the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51–63 (2010).

    Article  CAS  Google Scholar 

  42. Ichida, J. K. et al. A small-molecule inhibitor of Tgf-β; signaling replaces Sox2 in reprogramming by inducing nanog. Cell Stem Cell 5, 491–503 (2009).

    Article  CAS  Google Scholar 

  43. Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737 (2009).

    Article  CAS  Google Scholar 

  44. Hanna, J. et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595–601 (2009).

    Article  CAS  Google Scholar 

  45. Thomas, M. C. & Chiang, C-M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178 (2006).

    Article  CAS  Google Scholar 

  46. Griffiths, D. S. et al. LIF-independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease. Nat. Cell Biol. 13, 13–21 (2010).

    Article  Google Scholar 

  47. Stadtfeld, M., Maherali, N., Breault, D. T. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230–240 (2008).

    Article  CAS  Google Scholar 

  48. Yin, H., Sweeney, S., Raha, D., Snyder, M. & Lin, H. A high-resolution whole-genome map of key chromatin modifications in the adult Drosophila melanogaster. PLoS Genet. 7, e1002380 (2011).

    Article  CAS  Google Scholar 

  49. Szabó, P. E., Hübner, K., Schöler, H. & Mann, J. R. Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech. Dev. 115, 157–160 (2002).

    Article  Google Scholar 

  50. Stadtfeld, M., Maherali, N., Borkent, M. & Hochedlinger, K. A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nature Meth. 7, 53–55 (2009).

    Article  Google Scholar 

  51. Beard, C., Hochedlinger, K., Plath, K., Wutz, A. & Jaenisch, R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis 44, 23–28 (2006).

    Article  CAS  Google Scholar 

  52. Okabe, S., Forsberg-Nilsson, K., Spiro, A. C., Segal, M. & McKay, R. D. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102 (1996).

    Article  CAS  Google Scholar 

  53. Chen, X-F. et al. Mediator and SAGA have distinct roles in pol ii preinitiation complex assembly and function. Cell Rep. 2, 1061–1067 (2012).

    Article  CAS  Google Scholar 

  54. Lin, J. J. et al. Mediator coordinates PIC assembly with recruitment of CHD1. Genes Dev. 25, 2198–2209 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Pasque for critical reading of the manuscript and M. Grunstein (UCLA) for providing antibodies. K.P. is supported by the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, NIH (DP2OD001686 and P01 GM099134) and CIRM (RN1-00564); R.S. was supported by the Jonsson Comprehensive Cancer Center, C.C. by a Leukaemia and Lymphoma Research Grant (10040), G.B. by the Whitcome Pre-doctoral Training Program, B.A.G. by a National Science Foundation Early Faculty CAREER award, an NIH Innovator award (DP2OD007447) and NIH (P01 GM099134) and M.C. by the NIH (GM074701). R.S., C.C. and S.P. were supported by CIRM training grants.

Author information

Authors and Affiliations

Authors

Contributions

R.S., K.P. and B.A.G. planned the project. R.S. and K.P. wrote the manuscript. The following performed experiments, analysed and interpreted data: R.S., C.C., G.B., R.M., S.P. under K.P.’s supervision, M.G-C. under B.A.G.’s supervision, C.H. under M.C.’s supervision, and D.L. under M.P.’s supervision. N.M. generated H3K18me1 antibody.

Corresponding authors

Correspondence to Benjamin A. Garcia or Kathrin Plath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1160 kb)

Supplementary Table 1

Supplementary Information (XLSX 25 kb)

Supplementary Table 2

Supplementary Information (XLSX 22 kb)

Supplementary Table 3

Supplementary Information (XLSX 4670 kb)

Supplementary Table 4

Supplementary Information (XLSX 1184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sridharan, R., Gonzales-Cope, M., Chronis, C. et al. Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nat Cell Biol 15, 872–882 (2013). https://doi.org/10.1038/ncb2768

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2768

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing