Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The perivascular niche regulates breast tumour dormancy

Abstract

In a significant fraction of breast cancer patients, distant metastases emerge after years or even decades of latency. How disseminated tumour cells (DTCs) are kept dormant, and what wakes them up, are fundamental problems in tumour biology. To address these questions, we used metastasis assays in mice and showed that dormant DTCs reside on microvasculature of lung, bone marrow and brain. We then engineered organotypic microvascular niches to determine whether endothelial cells directly influence breast cancer cell (BCC) growth. These models demonstrated that endothelial-derived thrombospondin-1 induces sustained BCC quiescence. This suppressive cue was lost in sprouting neovasculature; time-lapse analysis showed that sprouting vessels not only permit, but accelerate BCC outgrowth. We confirmed this surprising result in dormancy models and in zebrafish, and identified active TGF-β1 and periostin as tumour-promoting factors derived from endothelial tip cells. Our work reveals that stable microvasculature constitutes a dormant niche, whereas sprouting neovasculature sparks micrometastatic outgrowth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dormant breast tumour cells reside on microvascular endothelium in distant tissues in vivo.
Figure 2: Microvascular endothelium induces sustained quiescence of breast tumour cells in engineered cultures.
Figure 3: TSP-1 is an angiocrine tumour suppressor.
Figure 4: Opposite regulation of tumour dormancy and growth by endothelial sub-niches: stable endothelium inhibits—whereas neovascular tips promote—breast tumour cell growth.
Figure 5: Notch1-mediated reduction in neovascular tips suppresses breast tumour cell outgrowth.
Figure 6: Ectopic vascular sprouting promotes growth of injected breast tumour cells in zebrafish larvae.
Figure 7: Neovascular tips comprise micrometastatic niches enriched for POSTN and TGF-β1.

Similar content being viewed by others

References

  1. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7, 834–846 (2007).

    Article  CAS  Google Scholar 

  2. Goss, P. E. & Chambers, A. F. Does tumour dormancy offer a therapeutic target? Nat. Rev. Cancer 10, 871–877 (2010).

    Article  CAS  Google Scholar 

  3. Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

    Article  CAS  Google Scholar 

  4. Uhr, J. W. & Pantel, K. Controversies in clinical cancer dormancy. Proc. Natl Acad. Sci. USA 108, 12396–12400 (2011).

    Article  CAS  Google Scholar 

  5. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  Google Scholar 

  6. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  CAS  Google Scholar 

  7. Psaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer 9, 285–293 (2009).

    Article  CAS  Google Scholar 

  8. Suzuki, M., Mose, E. S., Montel, V. & Tarin, D. Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am. J. Pathol. 169, 673–681 (2006).

    Article  CAS  Google Scholar 

  9. Naumov, G. N. et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 62, 2162–2168 (2002).

    CAS  PubMed  Google Scholar 

  10. Pantel, K. et al. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J. Natl. Cancer Inst. 85, 1419–1424 (1993).

    Article  CAS  Google Scholar 

  11. Bissell, M. J. & Hines, W. C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329 (2011).

    Article  CAS  Google Scholar 

  12. Boudreau, N., Sympson, C. J., Werb, Z. & Bissell, M. J. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267, 891–893 (1995).

    Article  CAS  Google Scholar 

  13. Spencer, V. A. et al. Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J. Cell Sci. 124, 123–132 (2011).

    Article  CAS  Google Scholar 

  14. Weaver, V. M. et al. β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2, 205–216 (2002).

    Article  CAS  Google Scholar 

  15. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    Article  CAS  Google Scholar 

  16. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    Article  CAS  Google Scholar 

  17. Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA 89, 9064–9068 (1992).

    Article  CAS  Google Scholar 

  18. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. New Engl. J. Med. 353, 793–802 (2005).

    Article  CAS  Google Scholar 

  19. Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563–572 (2002).

    Article  CAS  Google Scholar 

  20. Francia, G., Cruz-Munoz, W., Man, S., Xu, P. & Kerbel, R. S. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat. Rev. Cancer 11, 135–141 (2011).

    Article  CAS  Google Scholar 

  21. Paget, S. The distribution of secondary growths in cancer of the breast. Cancer Metast. Rev. 8, 98–101 (1989).

    CAS  Google Scholar 

  22. Briand, P., Nielsen, K. V., Madsen, M. W. & Petersen, O. W. Trisomy 7p and malignant transformation of human breast epithelial cells following epidermal growth factor withdrawal. Cancer Res. 56, 2039–2044 (1996).

    CAS  PubMed  Google Scholar 

  23. Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251–264 (2010).

    Article  CAS  Google Scholar 

  24. Seandel, M. et al. Generation of a functional and durable vascular nicheby the adenoviral E4ORF1 gene. Proc. Natl Acad. Sci. USA 105, 19288–19293 (2008).

    Article  CAS  Google Scholar 

  25. Butler, J. M., Kobayashi, H. & Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer 10, 138–146 (2010).

    Article  CAS  Google Scholar 

  26. Evensen, L. et al. Mural cell associated VEGF is required for organotypic vessel formation. PLoS ONE 4, e5798 (2009).

    Article  Google Scholar 

  27. Weinstat-Saslow, D. L. et al. Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res. 54, 6504–6511 (1994).

    CAS  PubMed  Google Scholar 

  28. Roberts, D. D. Regulation of tumor growth and metastasis by thrombospondin-1. FASEB J. 10, 1183–1191 (1996).

    Article  CAS  Google Scholar 

  29. Ghajar, C. M. et al. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J. 94, 1930–1941 (2008).

    Article  CAS  Google Scholar 

  30. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  Google Scholar 

  31. Avraham-Davidi, I. et al. ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nat. Med. 18, 967–973 (2012).

    Article  CAS  Google Scholar 

  32. Kim, S. et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102–106 (2009).

    Article  CAS  Google Scholar 

  33. Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2012).

    Article  CAS  Google Scholar 

  34. Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17, 867–874 (2011).

    Article  CAS  Google Scholar 

  35. Soikkeli, J. et al. Metastatic outgrowth encompasses COL-I, FN1, and POSTN up-regulation and assembly to fibrillar networks regulating cell adhesion, migration, and growth. Am. J. Pathol. 177, 387–403 (2010).

    Article  CAS  Google Scholar 

  36. Bierie, B. & Moses, H. L. Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 6, 506–520 (2006).

    Article  CAS  Google Scholar 

  37. Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K. S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559–563 (2001).

    Article  CAS  Google Scholar 

  38. Ding, B. S. et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147, 539–553 (2011).

    Article  CAS  Google Scholar 

  39. Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564–567 (2001).

    Article  CAS  Google Scholar 

  40. Dodge, A. B., Lu, X. & D’Amore, P. A. Density-dependent endothelial cell production of an inhibitor of smooth muscle cell growth. J. Cell Biochem. 53, 21–31 (1993).

    Article  CAS  Google Scholar 

  41. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    Article  CAS  Google Scholar 

  42. Kobayashi, H. et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat. Cell Biol. 12, 1046–1056 (2010).

    Article  CAS  Google Scholar 

  43. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  Google Scholar 

  44. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    Article  CAS  Google Scholar 

  45. Bandyopadhyay, S. et al. Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat. Med. 12, 933–938 (2006).

    Article  CAS  Google Scholar 

  46. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    Article  CAS  Google Scholar 

  47. Franses, J. W., Baker, A. B., Chitalia, V. C. & Edelman, E. R. Stromal endothelial cells directly influence cancer progression. Sci. Trans. Med. 3, 66ra65 (2011).

    Article  Google Scholar 

  48. Indraccolo, S. et al. Cross-talk between tumor and endothelial cells involving the Notch3-Dll4 interaction marks escape from tumor dormancy. Cancer Res. 69, 1314–1323 (2009).

    Article  CAS  Google Scholar 

  49. Panigrahy, D. et al. Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. J. Clin. Invest. 122, 178–191 (2012).

    Article  CAS  Google Scholar 

  50. Asosingh, K. et al. Nascent endothelium initiates th2 polarization of asthma. J. Immunol. 190, 3458–3465 (2013).

    Article  CAS  Google Scholar 

  51. Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001).

    Article  CAS  Google Scholar 

  52. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  Google Scholar 

  53. DeNardo, D. G. et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91–102 (2009).

    Article  CAS  Google Scholar 

  54. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007).

    Article  CAS  Google Scholar 

  55. Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943–953 (2010).

    Article  CAS  Google Scholar 

  56. Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264, 569–571 (1994).

    Article  CAS  Google Scholar 

  57. Stratman, A. N., Davis, M. J. & Davis, G. E. VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood 117, 3709–3719 (2011).

    Article  Google Scholar 

  58. Lee, G. Y., Kenny, P. A., Lee, E. H. & Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Meth. 4, 359–365 (2007).

    Article  CAS  Google Scholar 

  59. Pitulescu, M. E., Schmidt, I., Benedito, R. & Adams, R. H. Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice. Nat. Protoc. 5, 1518–1534 (2010).

    Article  CAS  Google Scholar 

  60. Herbert, S. P. et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326, 294–298 (2009).

    Article  CAS  Google Scholar 

  61. Nicoli, S. & Presta, M. The zebrafish/tumor xenograft angiogenesis assay. Nat. Protoc. 2, 2918–2923 (2007).

    Article  CAS  Google Scholar 

  62. Baluk, P., Morikawa, S., Haskell, A., Mancuso, M. & McDonald, D. M. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 163, 1801–1815 (2003).

    Article  Google Scholar 

  63. Tanner, K., Mori, H., Mroue, R., Bruni-Cardoso, A. & Bissell, M. J. Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proc. Natl Acad. Sci. USA 109, 1973–1978 (2012).

    Article  CAS  Google Scholar 

  64. Beliveau, A. et al. Raf-induced MMP9 disrupts tissue architecture of human breast cells in three-dimensional culture and is necessary for tumor growth in vivo. Genes Dev. 24, 2800–2811 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Rafii and B. Weinstein for generously providing the E4ORF1 lentiviral plasmid and stalactite mutant zebrafish, respectively. We are grateful to N. Boudreau, S. Rafii, R. Schwartz, R. Xu, A. Bruni-Cardoso and A.L. Correia for critical insight, and to other present members of the Bissell laboratory for helpful discussions. We thank A. Lo and C. Williams for technical assistance and T. Varimezova for performing blinded quantitative analysis. C.M.G. was financially supported by a Glenn T. Seaborg Postdoctoral Fellowship from LBNL and by a NCI-U54CA143836 training grant. K.J.E. is a Robert Black Fellow supported by the Damon Runyon Cancer Research Foundation (DRG-109-10). K.A.H.’s laboratory is supported by grants from the NIH (R01HL042493 and R01HL090895) and from the March of Dimes Foundation (6-FY12-356). The work in D.Y.R.S.’s laboratory was financially supported in part by grants from the NIH (HL54737) and the Packard Foundation. E.I.C.’s laboratory is supported by a Carol Baldwin Breast Cancer Award, a shared instrument grant (NIH/NCRR 1 S10 RR023680-1) and a DOE Subcontract (DE-AC02-05CH1123) from LBNL. D.L. is supported by The Hartwell Foundation. The work from M.J.B.’s laboratory is supported by grants from the US Department of Energy, Office of Biological and Environmental Research and Low Dose Scientific Focus Area (contract no. DE-AC02-05CH1123); by the National Cancer Institute (awards U01CA169538 (to D.L. and M.J.B.), U54CA126552, R37CA064786 and U54CA143836—Bay Area Physical Sciences–Oncology Center, University of California, Berkeley, California); by a grant from the Breast Cancer Research Foundation; and by the US Department of Defense (W81XWH0810736).

Author information

Authors and Affiliations

Authors

Contributions

C.M.G., D.L. and M.J.B. conceived of the study. C.M.G., H.P., I.R.M. and H.B. conducted animal studies and analysed resulting data. C.M.G., K.J.E. and D.Y.R.S. planned and executed zebrafish experiments. D.A. and K.A.H. lent expertise in the retinal neovascularization model. C.M.G. and H.M. collected and analysed data, and H.M. also provided conceptual advice. A.K. and E.I.C. conducted LC–MS/MS analysis and analysed data. C.M.G. and M.J.B. wrote the manuscript. All authors read and critiqued the manuscript extensively.

Corresponding authors

Correspondence to Cyrus M. Ghajar or Mina J. Bissell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1466 kb)

Opposite regulation of tumour quiescence and growth by endothelial sub-niches: stable endothelium inhibits breast tumour cell growth.

H2B-GFP T4-2 cells residing predominantly around stable endothelium does not undergo division over a 72 h period. Intervals, 20 min. Scale bar, 50 μm. (MOV 4280 kb)

Opposite regulation of tumour quiescence and growth by endothelial sub-niches: neovascular tips promote breast tumour cell growth.

H2B-GFP T4-2 cells are observed dividing soon after encountering neovascular tips. Highlighted cell divides after encountering an endothelial ‘probe’. At the right of the screen, another cell divides at 1 d, 16:00, as it encounters an approaching neovascular tip. One of the daughter cells divides again as the couplet resumes interaction with the tip. At the bottom, another cell ‘surfs’ past a neovascular tip and eventually divides. Intervals, 20 min. Scale bar, 100 μm. (MOV 4219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghajar, C., Peinado, H., Mori, H. et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15, 807–817 (2013). https://doi.org/10.1038/ncb2767

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2767

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer