Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor


The polycomb group gene Bmi1 is required for maintenance of adult stem cells in many organs1,2. Inactivation of Bmi1 leads to impaired stem cell self-renewal due to deregulated gene expression. One critical target of BMI1 is Ink4a/Arf, which encodes the cell-cycle inhibitors p16Ink4a and p19Arf (ref. 3). However, deletion of Ink4a/Arf only partially rescues Bmi1-null phenotypes4, indicating that other important targets of BMI1 exist. Here, using the continuously growing mouse incisor as a model system, we report that Bmi1 is expressed by incisor stem cells and that deletion of Bmi1 resulted in fewer stem cells, perturbed gene expression and defective enamel production. Transcriptional profiling revealed that Hox expression is normally repressed by BMI1 in the adult, and functional assays demonstrated that BMI1-mediated repression of Hox genes preserves the undifferentiated state of stem cells. As Hox gene upregulation has also been reported in other systems when Bmi1 is inactivated1,2,5,6,7, our findings point to a general mechanism whereby BMI1-mediated repression of Hox genes is required for the maintenance of adult stem cells and for prevention of inappropriate differentiation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Bmi1-expressing cells in the dental epithelium are stem cells.
Figure 2: Deletion of Bmi1 affects adult LaCL through both Ink4a/Arf-dependent and -independent mechanisms.
Figure 3: Bmi1 suppresses expression of Ink4a/Arf and Hox genes.
Figure 4: Hox gene upregulation contributes to the Bmi1 loss-of-function phenotype.
Figure 5: Overexpression of Hoxc9 in LaCLs phenocopies Bmi1 mutants.

Accession codes

Primary accessions

Gene Expression Omnibus


  1. 1

    Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Molofsky, A. V., He, S., Bydon, M., Morrison, S. J. & Pardal, R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19, 1432–1437 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Zacharek, S. J. et al. Lung stem cell self-renewal relies on BMI1-dependent control of expression at imprinted loci. Cell Stem Cell 9, 272–281 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Bruggeman, S. W., Hulsman, D. & van Lohuizen, M. Bmi1 deficient neural stem cells have increased integrin dependent adhesion to self-secreted matrix. Biochim. Biophys. Acta 1790, 351–360 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Fasano, C. A. et al. shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 1, 87–99 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Harada, H. et al. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J. Cell Biol. 147, 105–120 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Wang, X. P. et al. An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol. 5, 1324–1333 (2007).

    CAS  Google Scholar 

  10. 10

    Klein, O. D. et al. An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development 135, 377–385 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Smith, C. E. & Warshawsky, H. Cellular renewal in the enamel organ and the odontoblast layer of the rat incisor as followed by radioautography using 3H-thymidine. Anat. Rec. 183, 523–561 (1975).

    CAS  Article  Google Scholar 

  12. 12

    Seidel, K. et al. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development 137, 3753–3761 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Juuri, E. et al. Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Dev. Cell 23, 317–328 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Oguro, H. et al. Poised lineage specification in multipotential hematopoietic stem and progenitor cells by the polycomb protein Bmi1. Cell Stem Cell 6, 279–286 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Hosen, N. et al. Bmi-1-green fluorescent protein-knock-in mice reveal the dynamic regulation of bmi-1 expression in normal and leukemic hematopoietic cells. Stem Cells 25, 1635–1644 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Joyner, A. L. & Zervas, M. Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev. Dyn. 235, 2376–2385 (2006).

    Article  Google Scholar 

  18. 18

    Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40, 915–920 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Sangiorgi, E. & Capecchi, M. R. Bmi1 lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis. Proc. Natl Acad. Sci. USA 106, 7101–7106 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Li, C. Y. et al. E-cadherin regulates the behavior and fate of epithelial stem cells and their progeny in the mouse incisor. Dev. Biol. 366, 357–366 (2012).

    Article  Google Scholar 

  22. 22

    Hwang, W. S. & Tonna, E. A. Autoradiographic analysis of labeling indices and migration rates of cellular component of mouse incisors using tritiated thymidine (H3tdr). J. Dent. Res. 44, 42–53 (1965).

    CAS  Article  Google Scholar 

  23. 23

    Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Tani, H., Morris, R. J. & Kaur, P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc. Natl Acad. Sci. USA 97, 10960–10965 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Xiong, J., Mrozik, K., Gronthos, S. & Bartold, P. M. Epithelial cell rests of malassez contain unique stem cell populations capable of undergoing epithelial-mesenchymal transition. Stem Cells Dev. 21, 2012–2025 (2012).

    CAS  Article  Google Scholar 

  27. 27

    Simmer, J. P., Richardson, A. S., Smith, C. E., Hu, Y. & Hu, J. C. Expression of kallikrein-related peptidase 4 in dental and non-dental tissues. Eur. J. Oral Sci. 119, 226–233 (2011).

    Article  Google Scholar 

  28. 28

    Iwasaki, K. et al. Amelotin–a novel secreted, ameloblast-specific protein. J. Dental Res. 84, 1127–1132 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Chavez, M. G. et al. Characterization of dental epithelial stem cells from the mouse incisor with two-dimensional and three-dimensional platforms. Tissue Eng. C 19, 15–24 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Morillo Prado, J. R., Chen, X. & Fuller, M. T. Polycomb group genes Psc and Su(z)2 maintain somatic stem cell identity and activity in Drosophila. PloS ONE 7, e52892 (2012).

    Article  Google Scholar 

  31. 31

    Ahn, S. & Joyner, A. L. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118, 505–516 (2004).

    CAS  Article  Google Scholar 

  32. 32

    Bai, C. B., Auerbach, W., Lee, J. S., Stephen, D. & Joyner, A. L. Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129, 4753–4761 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Diamond, I., Owolabi, T., Marco, M., Lam, C. & Glick, A. Conditional gene expression in the epidermis of transgenic mice using the tetracycline-regulated transactivators tTA and rTA linked to the keratin 5 promoter. J. Invest. Dermatol. 115, 788–794 (2000).

    CAS  Article  Google Scholar 

  34. 34

    Sousa, V. H., Miyoshi, G., Hjerling-Leffler, J., Karayannis, T. & Fishell, G. Characterization of Nkx6-2-derived neocortical interneuron lineages. Cereb. Cortex 19, i1-10 (2009).

    Article  Google Scholar 

  35. 35

    Jung, H. et al. Global control of motor neuron topography mediated by the repressive actions of a single hox gene. Neuron 67, 781–796 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Rochat, A., Kobayashi, K. & Barrandon, Y. Location of stem cells of human hair follicles by clonal analysis. Cell 76, 1063–1073 (1994).

    CAS  Article  Google Scholar 

  37. 37

    Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl Acad. Sci. USA 84, 2302–2306 (1987).

    CAS  Article  Google Scholar 

  39. 39

    Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    CAS  Article  Google Scholar 

Download references


We thank members of the Klein laboratory for helpful advice, F. Michon for discussion, D-K. Tran and S. Alto for technical assistance, X-P. Wang for help with the culture system, A. Barczak and the UCSF Microarray Core Facilities for help with experiments and analysis, and Irving Weissman for mice. This work was supported by R01-DE021420 (NIH/NIDCR) and a CIRM New Faculty Award II, both to O.D.K.

Author information




B.B., J.K-H.H., N.B.S., H.J., E.S., R-P.H., A.F.G., J.S.D and O.D.K. designed and performed experiments. B.B., J.K-H.H and O.D.K. wrote the manuscript. All authors discussed results, analysed data and edited the manuscript.

Corresponding author

Correspondence to Ophir D. Klein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2415 kb)

Supplementary Table 1

Supplementary Information (XLS 56 kb)

Supplementary Table 2

Supplementary Information (XLS 27 kb)

Supplementary Table 3

Supplementary Information (XLS 80 kb)

Supplementary Table 4

Supplementary Information (XLS 115 kb)

Supplementary Table 5

Supplementary Information (XLS 196 kb)

Supplementary Table 6

Supplementary Information (XLS 35 kb)

Supplementary Table 7

Supplementary Information (XLS 33 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Biehs, B., Hu, JH., Strauli, N. et al. BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nat Cell Biol 15, 846–852 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing