Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signal integration by mTORC1 coordinates nutrient input with biosynthetic output

Abstract

Flux through metabolic pathways is inherently sensitive to the levels of specific substrates and products, but cellular metabolism is also managed by integrated control mechanisms that sense the nutrient and energy status of a cell or organism. The mechanistic target of rapamycin complex 1 (mTORC1), a protein kinase complex ubiquitous to eukaryotic cells, has emerged as a critical signalling node that links nutrient sensing to the coordinated regulation of cellular metabolism. Here, we discuss the role of mTORC1 as a conduit between cellular growth conditions and the anabolic processes that promote cell growth. The emerging network of signalling pathways through which mTORC1 integrates systemic signals (secreted growth factors) with local signals (cellular nutrients — amino acids, glucose and oxygen — and energy, ATP) is detailed. Our expanding understanding of the regulatory network upstream of mTORC1 provides molecular insights into the integrated sensing mechanisms by which diverse cellular signals converge to control cell physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mTORC1 signalling links cellular growth conditions with metabolic processes underlying anabolic cell growth and proliferation.
Figure 2: Secreted growth factors stimulate mTORC1 activity through the PI(3)K–Akt and Ras–Erk pathways.
Figure 3: Model of the Rag-dependent recruitment of mTORC1 to the lysosome in response to amino acids and the integration with Rheb-dependent growth factor signalling.
Figure 4: Transcriptional and post-translational regulation of mTORC1 by glucose, oxygen and cellular energy.

Similar content being viewed by others

References

  1. Menon, S. & Manning, B. D. Common corruption of the mTOR signaling network in human tumors. Oncogene 27, S43–S51 (2009).

    Google Scholar 

  2. Howell, J. J. & Manning, B. D. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol. Metab. 22, 94–102 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Weichhart, T. & Saemann, M. D. The multiple facets of mTOR in immunity. Trends Immunol. 30, 218–226 (2009).

    CAS  PubMed  Google Scholar 

  5. Loewith, R. & Hall, M. N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189, 1177–1201 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Campbell, L. E., Wang, X. & Proud, C. G. Nutrients differentially regulate multiple translation factors and their control by insulin. Biochem. J. 344, 433–441 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hara, K. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273, 14484–14494 (1998).

    CAS  PubMed  Google Scholar 

  8. Yecies, J. L. & Manning, B. D. mTOR links oncogenic signaling to tumor cell metabolism. J. Mol. Med. 89, 221–228 (2011).

    CAS  PubMed  Google Scholar 

  9. Inoki, K., Kim, J. & Guan, K. L. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381–400 (2012).

    CAS  PubMed  Google Scholar 

  10. Ricoult, S. J. & Manning, B. D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 14, 242–251 (2013).

    CAS  PubMed  Google Scholar 

  11. Ma, X. M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307–318 (2009).

    PubMed  Google Scholar 

  12. Jefferies, H. B., Reinhard, C., Kozma, S. C. & Thomas, G. Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc. Natl Acad. Sci. USA 91, 4441–4445 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Iadevaia, V., Huo, Y., Zhang, Z., Foster, L. J. & Proud, C. G. Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis. Biochem. Soc. Trans. 40, 168–172 (2012).

    CAS  PubMed  Google Scholar 

  16. Yecies, J. L. & Manning, B. D. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res. 71, 2815–2820 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323–1328 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Robitaille, A. M. et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320–1323 (2013).

    CAS  PubMed  Google Scholar 

  19. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem 269, 23757–23763 (1994).

    CAS  PubMed  Google Scholar 

  21. Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C. & Semenza, G. L. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell Biol. 21, 3995–4004 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hudson, C. C. et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell Biol. 22, 7004–7014 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol. Cell Biol. 23, 9361–9374 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Brugarolas, J. B., Vazquez, F., Reddy, A., Sellers, W. R. & Kaelin, W. G., Jr. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4, 147–158 (2003).

    CAS  PubMed  Google Scholar 

  25. Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    CAS  PubMed  Google Scholar 

  26. Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Peterson, T. R. et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408–420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rabinowitz, J. D. & White, E. Autophagy and metabolism. Science 330, 1344–1348 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jung, C. H. et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ganley, I. G. et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297–12305 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pena-Llopis, S. et al. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 30, 3242–3258 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoeffer, C. A. & Klann, E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 33, 67–75 (2010).

    CAS  PubMed  Google Scholar 

  37. Sengupta, S., Peterson, T. R., Laplante, M., Oh, S. & Sabatini, D. M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468, 1100–1104 (2010).

    CAS  PubMed  Google Scholar 

  38. Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11, 1457–1466 (2003).

    CAS  PubMed  Google Scholar 

  39. Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829–1834 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268 (2003).

    CAS  PubMed  Google Scholar 

  41. Stocker, H. et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol. 5, 559–565 (2003).

    CAS  PubMed  Google Scholar 

  42. Saucedo, L. J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 5, 566–571 (2003).

    CAS  PubMed  Google Scholar 

  43. Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5, 578–581 (2003).

    CAS  PubMed  Google Scholar 

  44. Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903–915 (2007).

    CAS  PubMed  Google Scholar 

  45. Dibble, C. C. et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 47, 535–546 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162 (2002).

    CAS  PubMed  Google Scholar 

  47. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657 (2002).

    CAS  PubMed  Google Scholar 

  48. Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4, 658–665 (2002).

    CAS  PubMed  Google Scholar 

  49. Roux, P. P., Ballif, B. A., Anjum, R., Gygi, S. P. & Blenis, J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl Acad. Sci USA 101, 13489–13494 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193 (2005).

    CAS  PubMed  Google Scholar 

  51. Cai, S. L. et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J. Cell Biol. 173, 279–289 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Vander Haar, E., Lee, S. I., Bandhakavi, S., Griffin, T. J. & Kim, D. H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316–323 (2007).

    CAS  PubMed  Google Scholar 

  53. Carriere, A. et al. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr. Biol. 18, 1269–1277 (2008).

    CAS  PubMed  Google Scholar 

  54. Foster, K. G. et al. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J. Biol. Chem. 285, 80–94 (2010).

    CAS  PubMed  Google Scholar 

  55. Carriere, A. et al. ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J. Biol. Chem. 286, 567–577 (2011).

    CAS  PubMed  Google Scholar 

  56. Huang, J. & Manning, B. D. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179–190 (2008).

    CAS  PubMed  Google Scholar 

  57. Blommaart, E. F., Luiken, J. J., Blommaart, P. J., van Woerkom, G. M. & Meijer, A. J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem. 270, 2320–2326 (1995).

    CAS  PubMed  Google Scholar 

  58. Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Long, X., Ortiz-Vega, S., Lin, Y. & Avruch, J. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem. 280, 23433–23436 (2005).

    CAS  PubMed  Google Scholar 

  60. Smith, E. M., Finn, S. G., Tee, A. R., Browne, G. J. & Proud, C. G. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J. Biol. Chem. 280, 18717–18727 (2005).

    CAS  PubMed  Google Scholar 

  61. Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E. & De Virgilio, C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 19, 15–26 (2005).

    CAS  PubMed  Google Scholar 

  62. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K. L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sekiguchi, T., Hirose, E., Nakashima, N., Ii, M. & Nishimoto, T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J. Biol. Chem. 276, 7246–7257 (2001).

    CAS  PubMed  Google Scholar 

  65. Efeyan, A. et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493, 679–683 (2013).

    CAS  PubMed  Google Scholar 

  66. Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196–1208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gong, R. et al. Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev. 25, 1668–1673 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678–683 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bonfils, G. et al. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell 46, 105–110 (2012).

    CAS  PubMed  Google Scholar 

  71. Han, J. M. et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410–424 (2012).

    CAS  PubMed  Google Scholar 

  72. Duran, A. et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell 44, 134–146 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Findlay, G. M., Yan, L., Procter, J., Mieulet, V. & Lamb, R. F. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem. J. 403, 13–20 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yan, L. et al. PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Mol. Cell 37, 633–642 (2010).

    CAS  PubMed  Google Scholar 

  75. Bryk, B., Hahn, K., Cohen, S. M. & Teleman, A. A. MAP4K3 regulates body size and metabolism in Drosophila. Dev. Biol. 344, 150–157 (2010).

    CAS  PubMed  Google Scholar 

  76. Duran, R. V. et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 47, 349–358 (2012).

    CAS  PubMed  Google Scholar 

  77. Kim, Y. M. et al. SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling. Mol. Cell 46, 833–846 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wauson, E. M. et al. The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy. Mol. Cell 47, 851–862 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim, S. et al. Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase. Cell Metab. 13, 215–221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Clark, G. J. et al. The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J. Biol. Chem. 272, 10608–10615 (1997).

    CAS  PubMed  Google Scholar 

  81. Takahashi, K., Nakagawa, M., Young, S. G. & Yamanaka, S. Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway. J. Biol. Chem. 280, 32768–32774 (2005).

    CAS  PubMed  Google Scholar 

  82. Buerger, C., DeVries, B. & Stambolic, V. Localization of Rheb to the endomembrane is critical for its signaling function. Biochem. Biophys. Res. Commun. 344, 869–880 (2006).

    CAS  PubMed  Google Scholar 

  83. Castro, A. F., Rebhun, J. F., Clark, G. J. & Quilliam, L. A. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J. Biol. Chem. 278, 32493–32496 (2003).

    CAS  PubMed  Google Scholar 

  84. Patel, J., Wang, X. & Proud, C. G. Glucose exerts a permissive effect on the regulation of the initiation factor 4E binding protein 4E-BP1. Biochem. J. 358, 497–503 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dennis, P. B. et al. Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102–1105 (2001).

    CAS  PubMed  Google Scholar 

  86. Arsham, A. M., Howell, J. J. & Simon, M. C. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J. Biol. Chem. 278, 29655–29660 (2003).

    CAS  PubMed  Google Scholar 

  87. Mihaylova, M. M. & Shaw, R. J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    CAS  PubMed  Google Scholar 

  89. Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290–303 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    CAS  PubMed  Google Scholar 

  91. Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955–968 (2006).

    CAS  PubMed  Google Scholar 

  92. Shaw, R. J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6, 91–99 (2004).

    CAS  PubMed  Google Scholar 

  93. Brugarolas, J. et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 18, 2893–2904 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, L. et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell 21, 521–531 (2006).

    PubMed  PubMed Central  Google Scholar 

  95. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hardie, D. G., Ross, F. A. & Hawley, S. A. AMP-Activated Protein Kinase: A Target for Drugs both Ancient and Modern. Chem. Biol. 19, 1222–1236 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Reiling, J. H. & Hafen, E. The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev. 18, 2879–2892 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shoshani, T. et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol. Cell Biol. 22, 2283–2293 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Greer, S. N., Metcalf, J. L., Wang, Y. & Ohh, M. The updated biology of hypoxia-inducible factor. EMBO J. 31, 2448–2460 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. DeYoung, M. P., Horak, P., Sofer, A., Sgroi, D. & Ellisen, L. W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 22, 239–251 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Vega-Rubin-de-Celis, S. et al. Structural analysis and functional implications of the negative mTORC1 regulator REDD1. Biochemistry 49, 2491–2501 (2010).

    CAS  PubMed  Google Scholar 

  102. Cam, H., Easton, J. B., High, A. & Houghton, P. J. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol. Cell 40, 509–520 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sofer, A., Lei, K., Johannessen, C. M. & Ellisen, L. W. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol. Cell Biol. 25, 5834–5845 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ben Sahra, I. et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 71, 4366–4372 (2011).

    CAS  PubMed  Google Scholar 

  105. Whitney, M. L., Jefferson, L. S. & Kimball, S. R. ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression. Biochem. Biophys. Res. Commun. 379, 451–455 (2009).

    CAS  PubMed  Google Scholar 

  106. Ellisen, L. W. et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol. Cell 10, 995–1005 (2002).

    CAS  PubMed  Google Scholar 

  107. Jin, H. O. et al. SP600125 negatively regulates the mammalian target of rapamycin via ATF4-induced Redd1 expression. FEBS Lett. 583, 123–127 (2009).

    CAS  PubMed  Google Scholar 

  108. Ramirez-Peinado, S. et al. 2-deoxyglucose induces Noxa-dependent apoptosis in alveolar rhabdomyosarcoma. Cancer Res. 71, 6796–6806 (2011).

    CAS  PubMed  Google Scholar 

  109. Wolff, N. C. et al. Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Mol. Cell Biol. 31, 1870–1884 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Laderoute, K. R. et al. 5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol. Cell Biol. 26, 5336–5347 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Cuadrado, A. & Nebreda, A. R. Mechanisms and functions of p38 MAPK signalling. Biochem. J. 429, 403–417 (2010).

    CAS  PubMed  Google Scholar 

  112. Zheng, M. et al. Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat. Cell Biol. 13, 263–272 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Cully, M. et al. A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1. Mol. Cell Biol. 30, 481–495 (2010).

    CAS  PubMed  Google Scholar 

  114. Li, Y., Inoki, K., Vacratsis, P. & Guan, K. L. The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14-3-3. J. Biol. Chem. 278, 13663–13671 (2003).

    CAS  PubMed  Google Scholar 

  115. Wu, X. N. et al. Phosphorylation of Raptor by p38beta participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation. J. Biol. Chem. 286, 31501–31511 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kim, S. G. et al. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell 49, 172–185 (2012).

    PubMed  PubMed Central  Google Scholar 

  117. Takai, H., Wang, R. C., Takai, K. K., Yang, H. & de Lange, T. Tel2 regulates the stability of PI3K-related protein kinases. Cell 131, 1248–1259 (2007).

    CAS  PubMed  Google Scholar 

  118. Izumi, N., Yamashita, A. & Ohno, S. Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2. Nucleus 3, 29–43 (2012).

    PubMed  PubMed Central  Google Scholar 

  119. Yip, C. K., Murata, K., Walz, T., Sabatini, D. M. & Kang, S. A. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 38, 768–774 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390–401 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kane, P. M. Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. J. Biol. Chem. 270, 17025–17032 (1995).

    CAS  PubMed  Google Scholar 

  122. Sautin, Y. Y., Lu, M., Gaugler, A., Zhang, L. & Gluck, S. L. Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol. Cell Biol. 25, 575–589 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yecies, J. L. et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14, 21–32 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Haas, J. T. et al. Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab. 15, 873–884 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Stanfel, M. N., Shamieh, L. S., Kaeberlein, M. & Kennedy, B. K. The TOR pathway comes of age. Biochim. Biophys. Acta 1790, 1067–1074 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Gallinetti, J., Harputlugil, E. & Mitchell, J. R. Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem. J. 449, 1–10 (2013).

    CAS  PubMed  Google Scholar 

  127. Backer, J. M. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem. J. 410, 1–17 (2008).

    CAS  PubMed  Google Scholar 

  128. Wiczer, B. M. & Thomas, G. Phospholipase D and mTORC1: nutrients are what bring them together. Sci. Signal. 5, pe13 (2012).

    PubMed  Google Scholar 

  129. Foster, D. A. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim. Biophys. Acta 1791, 949–955 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Byfield, M. P., Murray, J. T. & Backer, J. M. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J. Biol. Chem. 280, 33076–33082 (2005).

    CAS  PubMed  Google Scholar 

  131. Nobukuni, T. et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl Acad. Sci. USA 102, 14238–14243 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Gulati, P. et al. Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab. 7, 456–465 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Yoon, M. S., Du, G., Backer, J. M., Frohman, M. A. & Chen, J. Class III PI-3-kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway. J. Cell Biol. 195, 435–447 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Xu, L. et al. Phospholipase D mediates nutrient input to mammalian target of rapamycin complex 1 (mTORC1). J. Biol. Chem. 286, 25477–25486 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Juhasz, G. et al. The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181, 655–666 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Jaber, N. et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc. Natl Acad. Sci. USA 109, 2003–2008 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Elvers, M. et al. Impaired alpha(IIb)beta(3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci. Signal. 3, ra1 (2010).

    PubMed  PubMed Central  Google Scholar 

  138. Norton, L. J. et al. PLD1 rather than PLD2 regulates phorbol-ester-, adhesion-dependent and Fc{gamma}-receptor-stimulated ROS production in neutrophils. J. Cell Sci. 124, 1973–1983 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Um, S. H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).

    CAS  PubMed  Google Scholar 

  140. Khamzina, L., Veilleux, A., Bergeron, S. & Marette, A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146, 1473–1481 (2005).

    CAS  PubMed  Google Scholar 

  141. Korsheninnikova, E. et al. Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice. Diabetologia 49, 3049–3057 (2006).

    CAS  PubMed  Google Scholar 

  142. Castaneda, T. R. et al. Metabolic control by S6 kinases depends on dietary lipids. PLoS One 7, e32631 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, X. et al. Palmitate induced insulin resistance by PKCtheta-dependent activation of mTOR/S6K pathway in C2C12 myotubes. Exp. Clin. Endocrinol. Diabetes 118, 657–661 (2010).

    CAS  PubMed  Google Scholar 

  144. Arous, C., Naimi, M. & Van Obberghen, E. Oleate-mediated activation of phospholipase D and mammalian target of rapamycin (mTOR) regulates proliferation and rapamycin sensitivity of hepatocarcinoma cells. Diabetologia 54, 954–964 (2011).

    CAS  PubMed  Google Scholar 

  145. Rivas, D. A., Yaspelkis, B. B., 3rd, Hawley, J. A. & Lessard, S. J. Lipid-induced mTOR activation in rat skeletal muscle reversed by exercise and 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. J. Endocrinol. 202, 441–451 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Mordier, S. & Iynedjian, P. B. Activation of mammalian target of rapamycin complex 1 and insulin resistance induced by palmitate in hepatocytes. Biochem. Biophys. Res. Commun. 362, 206–211 (2007).

    CAS  PubMed  Google Scholar 

  147. Ichimura, A., Hirasawa, A., Hara, T. & Tsujimoto, G. Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostag. Oth. Lipid M. 89, 82–88 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work we were not able to cover in this Review owing to space constraints. C.C.D. is supported by NIH grant 5T32HL007893-15. Research in the Manning laboratory related to this subject is supported by NIH grants R01-CA122617 and P01-CA120964, DOD grants TS093033 and TS110065, a Sanofi Innovation Award, and grants from the American Diabetes Association and Ellison Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan D. Manning.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dibble, C., Manning, B. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 15, 555–564 (2013). https://doi.org/10.1038/ncb2763

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing