Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts


To learn more about cancer-associated fibroblasts (CAFs), we have isolated fibroblasts from different stages of breast cancer progression and analysed their function and gene expression. These analyses reveal that activation of the YAP transcription factor is a signature feature of CAFs. YAP function is required for CAFs to promote matrix stiffening, cancer cell invasion and angiogenesis. Remodelling of the ECM and promotion of cancer cell invasion requires the actomyosin cytoskeleton. YAP regulates the expression of several cytoskeletal regulators, including ANLN and DIAPH3, and controls the protein levels of MYL9 (also known as MLC2). Matrix stiffening further enhances YAP activation, thus establishing a feed-forward self-reinforcing loop that helps to maintain the CAF phenotype. Actomyosin contractility and Src function are required for YAP activation by stiff matrices. Further, transient ROCK inhibition is able to disrupt the feed-forward loop, leading to a long-lasting reversion of the CAF phenotype.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Isolation and characterization of fibroblasts from different disease stages.
Figure 2: YAP is activated in CAFs.
Figure 3: YAP is activated in CAFs in human disease.
Figure 4: YAP is required for CAF function.
Figure 5: Identification of YAP-regulated mRNA and proteins required for CAF function.
Figure 6: Actomyosin- and Src-dependence of YAP activation in CAFs.
Figure 7: Model outlining the role of YAP in the generation and maintenance of CAFs.

Accession codes

Primary accessions

Gene Expression Omnibus


  1. 1

    Bhowmick, N. A. & Moses, H. L. Tumour-stroma interactions. Curr. Opin. Gen. Dev. 15, 97–101 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Calvo, F. & Sahai, E. Cell communication networks in cancer invasion. Curr. Opin. Cell Biol. 23, 621–629 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Finak, G. et al. Gene expression signatures of morphologically normal breast tissue identify basal-like tumours. Breast Cancer Res. 8, R58 (2006).

    Article  Google Scholar 

  5. 5

    Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Levental, K. R. et al. Matrix crosslinking forces tumour progression by enhancing integrin signalling. Cell 139, 891–906 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Guilluy, C. et al. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat. Cell Biol. 13, 722–727 (2011).

    Article  Google Scholar 

  11. 11

    Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Lamar, J. M. et al. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl Acad. Sci. USA 109, E2441–E2450 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Sugimoto, H., Mundel, T. M., Kieran, M. W. & Kalluri, R. Identification of fibroblast heterogeneity in the tumour microenvironment. Cancer Biol. Therapy 5, 1640–1646 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumours by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell. Biol. 12, 954–961 (1992).

    CAS  Article  Google Scholar 

  18. 18

    Trimboli, A. J. et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461, 1084–1091 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Kim, J. W. et al. Loss of fibroblast HIF-1alpha accelerates tumourigenesis. Cancer Res. 72, 3187–3195 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Vousden, K. H. HPV E6: ensuring all’s well at the end. Trends Microbiol. 4, 337–338 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Lin, E. Y. et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol. 163, 2113–2126 (2003).

    Article  Google Scholar 

  22. 22

    Shree, T. et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 25, 2465–2479 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Subramanian, A., Kuehn, H., Gould, J., Tamayo, P. & Mesirov, J. P. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics 23, 3251–3253 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Roepman, P. et al. Dissection of a metastatic gene expression signature into distinct components. Genome Biol. 7, R117 (2006).

    Article  Google Scholar 

  25. 25

    Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14, 518–527 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Erez, N., Truitt, M., Olson, P., Arron, S. T. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumour-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 17, 135–147 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Chaudhry, S. I. et al. Autocrine IL-1beta-TRAF6 signalling promotes squamous cell carcinoma invasion through paracrine TNFalpha signalling to carcinoma-associated fibroblasts. Oncogene 32, 747–758 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Kojima, Y. et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signalling drives the evolution of tumour-promoting mammary stromal myofibroblasts. Proc. Natl Acad. Sci. USA 107, 20009–20014 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Zhang, H. et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J. Biol. Chem. 284, 13355–13362 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Zhao, B. et al. TEAD mediates YAP-dependent gene induction and growth control. Genes. Dev. 22, 1962–1971 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Descot, A. et al. Negative regulation of the EGFR-MAPK cascade by actin-MAL-mediated Mig6/Errfi-1 induction. Mol. Cell 35, 291–304 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Selvaraj, A. & Prywes, R. Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Mol. Biol. 5, 13 (2004).

    Article  Google Scholar 

  34. 34

    McGee, K. M., Vartiainen, M. K., Khaw, P. T., Treisman, R. & Bailly, M. Nuclear transport of the serum response factor coactivator MRTF-A is downregulated at tensional homeostasis. EMBO Rep. 12, 963–970 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Pan, D. The hippo signalling pathway in development and cancer. Dev. Cell 19, 491–505 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Zhao, B., Tumaneng, K. & Guan, K. L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat. Cell Biol. 13, 877–883 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Basu, S., Totty, N. F., Irwin, M. S., Sudol, M. & Downward, J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol. Cell 11, 11–23 (2003).

    CAS  Article  Google Scholar 

  38. 38

    Fernandez, B. G. et al. Actin-capping protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development 138, 2337–2346 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Densham, R. M. et al. MST kinases monitor actin cytoskeletal integrity and signal via c-Jun N-terminal kinase stress-activated kinase to regulate p21Waf1/Cip1 stability. Mol. Cell. Biol. 29, 6380–6390 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Sansores-Garcia, L. et al. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J. 30, 2325–2335 (2011).

    CAS  Article  Google Scholar 

  41. 41

    Wada, K., Itoga, K., Okano, T., Yonemura, S. & Sasaki, H. Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907–3914 (2011).

    CAS  Article  Google Scholar 

  42. 42

    Levy, D., Adamovich, Y., Reuven, N. & Shaul, Y. Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol. Cell 29, 350–361 (2008).

    CAS  Article  Google Scholar 

  43. 43

    Azab, A. K. et al. RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 114, 619–629 (2009).

    CAS  Article  Google Scholar 

  44. 44

    Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signalling. Cell 150, 780–791 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Tamm, C., Bower, N. & Anneren, C. Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signalling pathway downstream of LIF. J. Cell Sci. 124, 1136–1144 (2011).

    Article  Google Scholar 

  46. 46

    Carragher, N. O. & Frame, M. C. Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends in Cell Biol. 14, 241–249 (2004).

    CAS  Article  Google Scholar 

  47. 47

    Matallanas, D. et al. RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumour suppressor protein. Mol. Cell 27, 962–975 (2007).

    CAS  Article  Google Scholar 

  48. 48

    Harris, A. R. & Charras, G. T. Experimental validation of atomic force microscopy-based cell elasticity measurements. Nanotechnology 22, 345102 (2011).

    Article  Google Scholar 

  49. 49

    Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).

    CAS  Article  Google Scholar 

  50. 50

    Buess, M. et al. Characterization of heterotypic interaction effects in vitro to deconvolute global gene expression profiles in cancer. Genome Biol. 8, R191 (2007).

    Article  Google Scholar 

  51. 51

    Rajski, M. et al. IGF-I induced genes in stromal fibroblasts predict the clinical outcome of breast and lung cancer patients. BMC Med. 8, 1 (2010).

    Article  Google Scholar 

  52. 52

    Mazzone, M. et al. Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proc. Natl Acad. Sci. USA 107, 5012–5017 (2010).

    CAS  Article  Google Scholar 

  53. 53

    Klapholz-Brown, Z., Walmsley, G. G., Nusse, Y. M., Nusse, R. & Brown, P. O. Transcriptional program induced by Wnt protein in human fibroblasts suggests mechanisms for cell cooperativity in defining tissue microenvironments. PloS One 2, e945 (2007).

    Article  Google Scholar 

  54. 54

    Kaposi-Novak, P. et al. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J. Clin. Invest. 116, 1582–1595 (2006).

    CAS  Article  Google Scholar 

  55. 55

    Park, B. K. et al. NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat. Med. 13, 62–69 (2007).

    CAS  Article  Google Scholar 

  56. 56

    Farmer, P. et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat. Med. 15, 68–74 (2009).

    CAS  Article  Google Scholar 

Download references


F.C., N.E., S.H., R.P.J., S.I.C., K.H. and E.S. are financially supported by Cancer Research UK. A.G-G. was financially supported by a Royal Society Newton Fellowship, E.M. is in receipt of a Dorothy Hodgkins Postgraduate Award (DHPA) from the Engineering and Physical Sciences Research Council. G.C. is in receipt of a Royal Society University Research Fellowship. We thank N. Tapon, B. Thompson and laboratory members for help and advice throughout this work.

Author information




F.C. carried out all the experiments except those noted otherwise. N.E. performed all the quantitative real-time PCR analyses and generated data for Fig. 7e. E.S. generated data for Figs 3, 6g and 7b. E.M. and G.C. performed all the AFM analyses. A.G-G. and S.H. isolated and immortalized several breast and human CAFs. R.P.J. wrote the script for organotypic invasion quantification and helped analyse data for Supplementary Fig. S2c,e. S.I.C., K.H. and P.W. provided clinical material. F.C. and E.S. conceived the study and wrote the manuscript.

Corresponding author

Correspondence to Erik Sahai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1463 kb)

Supplementary Table 1

Supplementary Information (XLSX 10 kb)

Supplementary Table 2

Supplementary Information (XLSX 31 kb)

Supplementary Table 3

Supplementary Information (XLSX 11 kb)

Supplementary Table 4

Supplementary Information (XLSX 260 kb)

Supplementary Table 5

Supplementary Information (XLSX 13 kb)

Supplementary Table 6

Supplementary Information (XLSX 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Calvo, F., Ege, N., Grande-Garcia, A. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15, 637–646 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing