Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability

Subjects

A Corrigendum to this article was published on 23 December 2014

This article has been updated

Abstract

Fat is stored or mobilized according to food availability. Malfunction of the mechanisms that ensure this coordination underlie metabolic diseases in humans. In mammals, lysosomal and autophagic function is required for normal fat storage and mobilization in the presence or absence of food. Autophagy is tightly linked to nutrients. However, if and how lysosomal lipolysis is coupled to nutritional status remains to be determined. Here we identify MXL-3 and HLH-30 (TFEB orthologue) as transcriptional switches coupling lysosomal lipolysis and autophagy to nutrient availability and controlling fat storage and ageing in Caenorhabditis elegans. Transcriptional coupling of lysosomal lipolysis and autophagy to nutrients is also observed in mammals. Thus, MXL-3 and HLH-30 orchestrate an adaptive and conserved cellular response to nutritional status and regulate lifespan.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: lipl-1 to 5 are upregulated following fasting.
Figure 2: LIPL-mediated lysosomal lipolysis controls lipid-droplet fat stores.
Figure 3: MXL-3 represses lysosomal lipolysis in ad libitum-fed conditions.
Figure 4: HLH-30 induces lysosomal lipolysis following fasting.
Figure 5: HLH-30 activates vital cellular responses to starvation.
Figure 6: Lysosomal lipolysis and autophagy are transcriptionally linked to nutrients in mammals.
Figure 7: Lysosomal lipolysis delays C. elegans ageing.
Figure 8: MXL-3 and HLH-30 model of action.

Similar content being viewed by others

Change history

  • 21 November 2014

    The original version of this Article did not mention TFEB, the mammalian orthologue of the protein HLH-30, in the abstract. The fourth sentence in the abstract should have read 'Here we identify MXL-3 and HLH-30 (TFEB orthologue) as transcriptional switches coupling lysosomal lipolysis and autophagy to nutrient availability and controlling fat storage and ageing in Caenorhabditis elegans.' This has been corrected in all online versions of the Article.

References

  1. Whitehead, R. H. A note on the absorption of fat. Am. J. Physiol. 24, 294–296 (1909).

    Article  Google Scholar 

  2. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  Google Scholar 

  3. Czaja, M. J. & Cuervo, A. M. Lipases in lysosomes, what for? Autophagy 5, 866–867 (2009).

    Article  Google Scholar 

  4. Kovsan, J., Bashan, N., Greenberg, A. S. & Rudich, A. Potential role of autophagy in modulation of lipid metabolism. Am. J. Physiol. Endocrinol. Metab. 298, E1–E7 (2010).

    Article  CAS  Google Scholar 

  5. Wang, J. & Kim, S. K. Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130, 1621–1634 (2003).

    Article  CAS  Google Scholar 

  6. Zinke, I., Schutz, C. S., Katzenberger, J. D., Bauer, M. & Pankratz, M. J. Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J. 21, 6162–6173 (2002).

    Article  CAS  Google Scholar 

  7. Bauer, M. et al. Starvation response in mouse liver shows strong correlation with life-span-prolonging processes. Physiol. Genom. 17, 230–244 (2004).

    Article  CAS  Google Scholar 

  8. Mallo, G. V. et al. Inducible antibacterial defense system in C. elegans. Curr. Biol. 12, 1209–1214 (2002).

    Article  CAS  Google Scholar 

  9. Guda, C. pTARGET: a web server for predicting protein subcellular localization. Nucleic Acids Res. 34, W210–W213 (2006).

    Article  CAS  Google Scholar 

  10. Guda, C. & Subramaniam, S. pTARGET [corrected] a new method for predicting protein subcellular localization in eukaryotes. Bioinformatics 21, 3963–3969 (2005).

    Article  CAS  Google Scholar 

  11. Schroeder, L. K. et al. Function of the Caenorhabditis elegans ABC transporter PGP-2 in the biogenesis of a lysosome-related fat storage organelle. Mol. Biol. Cell 18, 995–1008 (2007).

    Article  CAS  Google Scholar 

  12. Grove, C. A. et al. A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 138, 314–327 (2009).

    Article  CAS  Google Scholar 

  13. O’Rourke, E. J., Soukas, A. A., Carr, C. E. & Ruvkun, G. C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab. 10, 430–435 (2009).

    Article  Google Scholar 

  14. Ashrafi, K. et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268–272 (2003).

    Article  CAS  Google Scholar 

  15. Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

    Article  CAS  Google Scholar 

  16. Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

    Article  CAS  Google Scholar 

  17. He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).

    Article  CAS  Google Scholar 

  18. Samuelson, A. V., Carr, C. E. & Ruvkun, G. Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes Dev. 21, 2976–2994 (2007).

    Article  CAS  Google Scholar 

  19. Melendez, A. et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391 (2003).

    Article  CAS  Google Scholar 

  20. Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4, e24 (2008).

    Article  Google Scholar 

  21. Narbonne, P. & Roy, R. Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature 457, 210–214 (2009).

    Article  CAS  Google Scholar 

  22. Jo, H., Shim, J., Lee, J. H., Lee, J. & Kim, J. B. IRE-1 and HSP-4 contribute to energy homeostasis via fasting-induced lipases in C. elegans. Cell Metab. 9, 440–448 (2009).

    Article  CAS  Google Scholar 

  23. Tan, K. T., Luo, S. C., Ho, W. Z. & Lee, Y. H. Insulin/IGF-1 receptor signaling enhances biosynthetic activity and fat mobilization in the initial phase of starvation in adult male C. elegans. Cell Metab. 14, 390–402 (2011).

    Article  CAS  Google Scholar 

  24. Van Gilst, M. R., Hadjivassiliou, H. & Yamamoto, K. R. A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proc. Natl Acad. Sci. USA 102, 13496–13501 (2005).

    Article  CAS  Google Scholar 

  25. Walker, A. K. et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 24, 1403–1417 (2010).

    Article  CAS  Google Scholar 

  26. Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).

    Article  CAS  Google Scholar 

  27. Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal 5, ra42 (2012).

    Article  Google Scholar 

  28. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article  CAS  Google Scholar 

  29. Briese, M., Esmaeili, B., Johnson, N. M. & Sattelle, D. B. pWormgatePro enables promoter-driven knockdown by hairpin RNA interference of muscle and neuronal gene products in Caenorhabditis elegans. Invert Neurosci. 6, 5–12 (2006).

    Article  CAS  Google Scholar 

  30. Watts, J. L. & Browse, J. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 99, 5854–5859 (2002).

    Article  CAS  Google Scholar 

  31. Deplancke, B., Dupuy, D., Vidal, M. & Walhout, A.J. A gateway-compatible yeast one-hybrid system. Genome Res. 14, 2093–2101 (2004).

    Article  CAS  Google Scholar 

  32. Mukhopadhyay, A., Deplancke, B., Walhout, A. J. & Tissenbaum, H. A. Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat. Protoc. 3, 698–709 (2008).

    Article  CAS  Google Scholar 

  33. Liu, B., Du, H., Rutkowski, R., Gartner, A. & Wang, X. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 337, 351–354 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Ruvkun, Ausubel and Kaplan laboratories for helpful comments, especially S. Curran, A. Lee-Conery and M. Wang for help with longevity experiments, J. Larkins-Ford for carrying out Biosort analyses, J. Xu for help with qRT–PCR experiments, J. Bai for acquiring confocal microscopy images, and J. Melo, C. Danna and A. Frand for helpful reading of the manuscript. We are grateful to R. Niedra, B. Seed, Y. Namiki and M. Oettinger for sharing expertise and reagents for mammalian experiments, and thanks H. Y. Mak, A. Soukas, M. Van Gilst, M. Freeman, A. Saghatelian and A. Tyler for protocols, access to equipment and discussions on lipid measurements. We are also grateful to A. Mah and D. Baillie for generating some transgenic strains used early in this project but not presented here, and thank N. Martinez and M. Walhout for sharing reagents and expertise on yeast one-hybrid experiments. We would like to thank the National Bioresource Project, the C. elegans Genetics Center, C. Bargmann and G. Hermann for strains. E.J.O’R. was a recipient of a Human Frontiers Science Program Postdoctoral fellowship. This work was supported by grants R01DK070147 to G.R. and K99DK087928 to E.J.O’R.

Author information

Authors and Affiliations

Authors

Contributions

E.J.O’R. designed the overall studies, carried out the experiments and wrote the manuscript. G.R. discussed results and revised the manuscript.

Corresponding authors

Correspondence to Eyleen J. O’Rourke or Gary Ruvkun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2673 kb)

Supplementary Information

Supplementary Table 1 (XLS 103 kb)

Supplementary Information

Supplementary Table 2 (XLS 138 kb)

Supplementary Information

Supplementary Table 3 (XLS 117 kb)

Supplementary Information

Supplementary Table 4 (XLSX 52 kb)

Supplementary Information

Supplementary Table 5 (XLSX 44 kb)

Supplementary Information

Supplementary Table 6 (XLSX 51 kb)

Supplementary Information

Supplementary Table 7 (XLSX 50 kb)

Supplementary Information

Supplementary Table 8 (XLSX 48 kb)

Supplementary Information

Supplementary Table 9 (XLSX 65 kb)

Supplementary Information

Supplementary Table 10 (XLSX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Rourke, E., Ruvkun, G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 15, 668–676 (2013). https://doi.org/10.1038/ncb2741

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing