Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity

Abstract

Organisms are constantly challenged by stresses and privations and require adaptive responses for their survival. The forkhead box O (FOXO) transcription factor DAF-16 (hereafter referred to as DAF-16/FOXO) is a central nexus in these responses, but despite its importance little is known about how it regulates its target genes. Proteomic identification of DAF-16/FOXO-binding partners in Caenorhabditis elegans and their subsequent functional evaluation by RNA interference revealed several candidate DAF-16/FOXO cofactors, most notably the chromatin remodeller SWI/SNF. DAF-16/FOXO and SWI/SNF form a complex and globally co-localize at DAF-16/FOXO target promoters. We show that specifically for gene activation, DAF-16/FOXO depends on SWI/SNF, facilitating SWI/SNF recruitment to target promoters, to activate transcription by presumed remodelling of local chromatin. For the animal, this translates into an essential role for SWI/SNF in DAF-16/FOXO-mediated processes, in particular dauer formation, stress resistance and the promotion of longevity. Thus, we give insight into the mechanisms of DAF-16/FOXO-mediated transcriptional regulation and establish a critical link between ATP-dependent chromatin remodelling and lifespan regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DAF-16/FOXO binds to the chromatin remodeller SWI/SNF.
Figure 2: A BAF-like subclass of SWI/SNF is required for regulation of DAF-16/FOXO target genes.
Figure 3: SWI/SNF is required for regulation of a large fraction of DAF-16/FOXO target genes—in particular those activated by DAF-16/FOXO. Wild-type, daf-2(e1370ts), daf-2(e1370ts); daf-16(0), and daf-2(e1370ts); swsn-1(os22ts) C. elegans were grown to the L4 stage, and then shifted to restrictive temperature. After 20 h, genome-wide mRNA expression levels were determined by mRNA-seq.
Figure 4: SWI/SNF extensively associates with DAF-16/FOXO-bound promoter regions.
Figure 5: DAF-16/FOXO recruits SWI/SNF specifically to target promoters that are directly activated by DAF-16/FOXO.
Figure 6: SWI/SNF is required for DAF-16/FOXO-mediated dauer formation, stress resistance and longevity.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

Referenced accessions

Gene Expression Omnibus

References

  1. Kenyon, C. The plasticity of ageing: insights from long-lived mutants. Cell 120, 449–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Calnan, D. R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Murphy, C. T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–283 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Gerstein, M. B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berdichevsky, A., Viswanathan, M., Horvitz, H. R. & Guarente, L. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125, 1165–1177 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Samuelson, A. V, Carr, C. E. & Ruvkun, G. Gene activities that mediate increased life span of C. elegans insulin-like signalling mutants. Genes Dev. 21, 2976–2994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing stem cells. Oncogene 30, 3105–3126 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Margalit, A. et al. Barrier to autointegration factor blocks premature cell fusion and maintains adult muscle integrity in C. elegans. J. Cell Biol. 178, 661–673 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Curran, S. P. & Ruvkun, G. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet. 3, e56 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kwon, C. S. & Wagner, D. Unwinding chromatin for development and growth: a few genes at a time. Trends Genet. 23, 403–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Hargreaves, D. C. & Crabtree, G. R. ATP-dependent chromatin remodelling: genetics, genomics and mechanisms. Cell Res. 21, 396–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Phelan, M. L., Sif, S., Narlikar, G. J. & Kingston, R. E. Reconstitution of a core chromatin remodelling complex from SWI/SNF subunits. Mol. Cell 3, 247–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Moshkin, Y. M., Mohrmann, L., Van Ijcken, W. F. J. & Verrijzer, C. P. Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control. Mol. Cell. Biol. 27, 651–661 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Shibata, Y., Uchida, M., Takeshita, H., Nishiwaki, K. & Sawa, H. Multiple functions of PBRM-1/Polybromo- and LET-526/Osa-containing chromatin remodelling complexes in C. elegans development. Dev. Biol. 361, 349–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Sawa, H., Kouike, H. & Okano, H. Components of the SWI/SNF complex are required for asymmetric cell division in C. elegans. Mol. Cell 6, 617–624 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Libina, N., Berman, J. R. & Kenyon, C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115, 489–502 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Henderson, S. T. & Johnson, T. E. daf-16 integrates developmental and environmental inputs to mediate ageing in the nematode Caenorhabditis elegans. Curr. Biol. 11, 1975–1980 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Murphy, C. T., Lee, S-J. & Kenyon, C. Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc. Natl Acad. Sci. 104, 19046–19050 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Farkas, G. et al. The Trithorax-like gene encodes the Drosophila GAGA factor. Nature 371, 806–808 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Peterson, C. L. & Workman, J. L. Promoter targeting and chromatin remodelling by the SWI/SNF complex. Curr. Opin. Genet. Dev. 10, 187–192 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Fielenbach, N. & Antebi, A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 22, 2149–2165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, S. S., Kennedy, S., Tolonen, A. C. & Ruvkun, G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 300, 644–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hatta, M. & Cirillo, L. A. Chromatin opening and stable perturbation of core histone: DNA contacts by FoxO1. J. Biol. Chem. 282, 35583–35593 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Greer, E. L. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365–371 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greer, E. L. et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466, 383–387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Longo, V. D. & Kennedy, B. K. Sirtuins in ageing and age-related disease. Cell 126, 257–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Chatterjee, N. et al. Histone H3 tail acetylation modulates ATP-dependent remodelling through multiple mechanisms. Nucleic Acids Res. 39, 8378–8391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Flachsbart, F. et al. Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc. Natl Acad. Sci. USA 106, 2700–2705 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Willcox, B. J. et al. FOXO3A genotype is strongly associated with human longevity. Proc. Natl Acad. Sci. USA 105, 13987–13992 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stiernagle, T. Maintenance of C. elegans. WormBook 1–11 (2006).

  34. Ahringer, J. Reverse genetics. WormBook 1–43 (2006).

  35. Rual, J. F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, 2162–2168 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Xu, T. et al. ProLuCID, a fast and sensitive tandem mass spectra-based protein identification program. Mol. Cell. Proteomics 5, S174 (2006).

    Google Scholar 

  38. Tabb, D. L., McDonald, W. H. & Yates, J. R. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hamilton, B. et al. A systematic RNAi screen for longevity genes in C. elegans. Genes Dev. 19, 1544–1555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Curran, S. P., Wu, X., Riedel, C. G. & Ruvkun, G. A soma-to-germline transformation in long-lived Caenorhabditis elegans mutants. Nature 459, 1079–1084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoogewijs, D., Houthoofd, K., Matthijssens, F., Vandesompele, J. & Vanfleteren, J. R. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol. Biol. 9, 9 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li, J. et al. Caenorhabditis elegans HCF-1 functions in longevity maintenance as a DAF-16 regulator. PLoS Biol. 6, e233 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Niu, W. et al. Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans. Genome Res. 21, 245–254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bolstad, B. M., Irizarry, R. a, Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Whyte, W. a et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482, 221–225 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thomas-Chollier, M. et al. A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs. Nat. Protoc. 7, 1551–1568 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Cassada, R. C. & Russell, R. L. The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol. 46, 326–342 (1975).

    Article  CAS  PubMed  Google Scholar 

  54. Rizki, G. et al. The evolutionarily conserved longevity determinants HCF-1 andSIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet. 7, e1002235 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. R Development Core Team R: A language and environment for statistical computing. (2010). at http://www.r-project.org/.

Download references

Acknowledgements

We thank H. Sawa (National Institute of Genetics, Japan), S. Mitani (Tokyo Women’s Medical University, Japan), M. Hansen (Sanford-Burnham Medical Research Institute, USA) and the Caenorhabditis Genetics Center for strains. We thank G. Hayes, U. Kim, M. Borowski, A. Puczinska and D. Grau for experimental support. We thank I. Cheeseman, K. Bouazoune, M. Simon, B. Ardehali, W. Mair, T. Montgomery and the Avruch laboratory for helpful discussions. This work was supported by grants from the National Institutes of Health to G.R. (AG014161 and AG016636), J.M.A. (5P30CA006516 and 2P01CA120964), J.A.W. (F32GM093491), N.V.K. (F32AI100501-01) and R.E.K. (GM048405). C.G.R. was supported by long-term fellowships from the Human Frontier Science Program and the European Molecular Biology Organization, R.H.D. by the American Cancer Society (122240-PF-12-078-01-RMC), N.V.K. by a Tosteson Postdoctoral Fellowship Award, S.K.B. by the Damon Runyon Cancer Research Foundation, and T.H. by the Glenn Foundation for Medical Research and the Austrian Science Fund (FWF).

Author information

Authors and Affiliations

Authors

Contributions

C.G.R. and G.R. conceived and designed the experiments. C.G.R., G.F.L., N.V.K., J.A.W. and J.M.A. conducted the experiments. R.H.D. analysed the mRNA-seq and ChIP-seq data. S.K.B., R.E.K., T.H. and A.D. provided unpublished methods, materials and advice. C.G.R. and G.R. wrote the manuscript.

Corresponding author

Correspondence to Gary Ruvkun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 603 kb)

Supplementary Information

Supplementary Table 1 (XLSX 44558 kb)

Supplementary Information

Supplementary Table 2 (XLSX 27 kb)

Supplementary Information

Supplementary Table 3 (XLSX 18 kb)

Supplementary Information

Supplementary Table 4 (XLSX 26 kb)

Supplementary Information

Supplementary Table 5 (XLSX 17 kb)

Supplementary Information

Supplementary Table 6 (XLSX 15 kb)

Supplementary Information

Supplementary Table 7 (XLSX 16 kb)

Supplementary Information

Supplementary Table 8 (XLSX 189 kb)

Supplementary Information

Supplementary Table 9 (XLSX 20 kb)

Supplementary Information

Supplementary Table 10 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedel, C., Dowen, R., Lourenco, G. et al. DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat Cell Biol 15, 491–501 (2013). https://doi.org/10.1038/ncb2720

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing