Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Formin' cables under stress

How application of force affects actin remodelling during mechanotransduction has remained unclear. Mechanical manipulation of the cell cortex is now shown to trigger actin monomer release from filaments, which in turn activates formin-dependent actin filament elongation. This force-sensitive actin polymerization does not require GTPases or membrane receptors, but it involves actin itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed model of mechanosensitive, formin-mediated actin filament elongation.

References

  1. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  Google Scholar 

  2. Bershadsky, A. D. et al. Eur. J. Cell. Biol. 85, 165–173 (2006).

    Article  CAS  Google Scholar 

  3. Higashida, C. et al. Nat. Cell Biol. 15, 395–405 (2013).

    Article  CAS  Google Scholar 

  4. Bershadsky, A. Trends Cell Biol. 14, 589–593 (2004).

    Article  CAS  Google Scholar 

  5. Higashida, C. et al. Science 303, 2007–2010 (2004).

    Article  CAS  Google Scholar 

  6. Paul, A. S. & Pollard, T. D. Curr. Biol. 18, 9–19 (2008).

    Article  CAS  Google Scholar 

  7. Paul, A. S. & Pollard, T. D. Cell Motil. Cytoskel. 66, 606–617 (2009).

    Article  CAS  Google Scholar 

  8. Li, F. & Higgs, H. N. Curr. Biol. 13, 1335–1340 (2003).

    Article  CAS  Google Scholar 

  9. Lammers, M., Rose, R., Scrima, A. & Wittinghofer, A. EMBO J. 24, 4176–4187 (2005).

    Article  CAS  Google Scholar 

  10. Campellone, K. G. & Welch, M. D. Nat. Rev. Mol. Cell Biol. 11, 237–251 (2010).

    Article  CAS  Google Scholar 

  11. Rose, R. et al. Nature 435, 513–518 (2005).

    Article  CAS  Google Scholar 

  12. Kozlov, M. M. & Bershadsky, A. D. J. Cell Biol. 167, 1011–1017 (2004).

    Article  CAS  Google Scholar 

  13. Higashida, C. et al. J. Cell Sci. 121, 3403–3412 (2008).

    Article  CAS  Google Scholar 

  14. Kiuchi, T., Nagai, T., Ohashi, K., Watanabe, N. & Mizuno, K. Bioarchitecture 1, 240–244 (2011).

    Article  Google Scholar 

  15. Kiuchi, T., Nagai, T., Ohashi, K. & Mizuno, K. J. Cell Biol. 193, 365–380 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Leckband.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leckband, D. Formin' cables under stress. Nat Cell Biol 15, 345–346 (2013). https://doi.org/10.1038/ncb2715

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2715

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing