Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis

Abstract

The tumour stroma is an active participant during cancer progression. Stromal cells promote tumour progression and metastasis through multiple mechanisms including enhancing tumour invasiveness and angiogenesis, and suppressing immune surveillance. We report here that miR-126/miR-126*, a microRNA pair derived from a single precursor, independently suppress the sequential recruitment of mesenchymal stem cells and inflammatory monocytes into the tumour stroma to inhibit lung metastasis by breast tumour cells in a mouse xenograft model. miR-126/miR-126* directly inhibit stromal cell-derived factor-1 alpha (SDF-1α) expression, and indirectly suppress the expression of chemokine (C–C motif) ligand 2 (Ccl2) by cancer cells in an SDF-1α-dependent manner. miR-126/miR-126* expression is downregulated in cancer cells by promoter methylation of their host gene Egfl7. These findings determine how this microRNA pair alters the composition of the primary tumour microenvironment to favour breast cancer metastasis, and demonstrate a correlation between miR-126/126* downregulation and poor metastasis-free survival of breast cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of miR-126 and miR-126* as potential suppressors of breast cancer metastasis.
Figure 2: Identification of Sdf-1α as a target for miR-126/126*.
Figure 3: miR-126 and miR-126* regulate Sdf-1α independently.
Figure 4: miR-126/miR-126* do not suppress tumour angiogenesis or the recruitment of HSCs and EPCs.
Figure 5: miR-126/miR-126* suppress MSC migration through downregulating SDF-1α in vitro and in vivo.
Figure 6: miR-126/miR-126* regulate inflammatory monocyte recruitment through indirectly downregulating Ccl2 in vivo.
Figure 7: Epigenetic regulation of miR-126 biogenesis through changes in the methylation status of the host gene Egfl7 T2 promoter.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).

    Article  Google Scholar 

  2. Nguyen, D. X., Bos, P. D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274–284 (2009).

    Article  CAS  Google Scholar 

  3. Valastyan, S. & Weinberg, R. A. Tumour metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).

    Article  CAS  Google Scholar 

  4. Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    Article  CAS  Google Scholar 

  5. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumour microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  Google Scholar 

  6. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumour growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  Google Scholar 

  7. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    Article  CAS  Google Scholar 

  8. Li, H. J., Reinhardt, F., Herschman, H. R. & Weinberg, R. A. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov. 2, 840–855 (2012).

    Article  CAS  Google Scholar 

  9. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  10. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252 (2009).

    Article  CAS  Google Scholar 

  11. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  12. Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S. & Calin, G. A. MicroRNAs–the micro steering wheel of tumour metastases. Nat. Rev. Cancer 9, 293–302 (2009).

    Article  CAS  Google Scholar 

  13. Kasinski, A. L. & Slack, F. J. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat. Rev. Cancer 11, 849–864 (2011).

    Article  CAS  Google Scholar 

  14. Volinia, S. et al. A microRNA expression signature of human solid tumours defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

    Article  CAS  Google Scholar 

  15. Ma, L., Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    Article  CAS  Google Scholar 

  16. Tavazoie, S. F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147-U143 (2008).

    Article  Google Scholar 

  17. Png, K. J., Halberg, N., Yoshida, M. & Tavazoie, S. F. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 481, 190–194 (2012).

    Article  CAS  Google Scholar 

  18. Crawford, M. et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem. Biophys. Res. Commun. 373, 607–612 (2008).

    Article  CAS  Google Scholar 

  19. Dong, M. et al. The type III TGF-beta receptor suppresses breast cancer progression. J. Clin. Invest. 117, 206–217 (2007).

    Article  CAS  Google Scholar 

  20. Yang, P. et al. TGF-beta-miR-34a-CCL22 signaling-induced treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 22, 291–303 (2012).

    Article  CAS  Google Scholar 

  21. Miranda, K. C. et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203–1217 (2006).

    Article  CAS  Google Scholar 

  22. Betel, D., Wilson, M., Gabow, A., Marks, D. S. & Sander, C. The microRNA.org resource: targets and expression. Nucl. Acids Res. 36, D149–D153 (2008).

    Article  CAS  Google Scholar 

  23. Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  Google Scholar 

  24. Stenvang, J., Petri, A., Lindow, M., Obad, S. & Kauppinen, S. Inhibition of microRNA function by antimiR oligonucleotides. Silence 3, 1 (2012).

    Article  CAS  Google Scholar 

  25. Kryczek, I. et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. 65, 465–472 (2005).

    CAS  PubMed  Google Scholar 

  26. Aiuti, A., Webb, I. J., Bleul, C., Springer, T. & GutierrezRamos, J. C. The chemokine SDF-1 is a chemoattractant for human CD34(+) hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34(+) progenitors to peripheral blood. J. Exp. Med. 185, 111–120 (1997).

    Article  CAS  Google Scholar 

  27. Ponte, A. L. et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25, 1737–1745 (2007).

    Article  CAS  Google Scholar 

  28. Kitaori, T. et al. Stromal cell-derived factor 1/CXCR4 signalling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 60, 813–823 (2009).

    Article  CAS  Google Scholar 

  29. Son, B. R. et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24, 1254–1264 (2006).

    Article  CAS  Google Scholar 

  30. Soleimani, M. & Nadri, S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc. 4, 102–106 (2009).

    Article  CAS  Google Scholar 

  31. Broxmeyer, H. E. et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 201, 1307–1318 (2005).

    Article  CAS  Google Scholar 

  32. Fox, J. M., Chamberlain, G., Ashton, B. A. & Middleton, J. Recent advances into the understanding of mesenchymal stem cell trafficking. Br. J. Haematol. 137, 491–502 (2007).

    Article  CAS  Google Scholar 

  33. Meirelles Lda, S. & Nardi, N. B. Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br. J. Haematol. 123, 702–711 (2003).

    Article  Google Scholar 

  34. Baddoo, M. et al. Characterization of mesenchymal stem cells isolated frommurine bone marrow by negative selection. J. Cell Biochem. 89, 1235–1249 (2003).

    Article  CAS  Google Scholar 

  35. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  Google Scholar 

  36. Aslakson, C. J. & Miller, F. R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumour. Cancer Res. 52, 1399–1405 (1992).

    CAS  Google Scholar 

  37. Saito, Y. et al. Epigenetic therapy upregulates the tumour suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem. Biophys. Res. Commun. 379, 726–731 (2009).

    Article  CAS  Google Scholar 

  38. Marchesi, F. et al. Increased survival, proliferation, and migration in metastatic human pancreatic tumour cells expressing functional CXCR4. Cancer Res. 64, 8420–8427 (2004).

    Article  CAS  Google Scholar 

  39. Miao, Z. et al. CXCR7 (RDC1) promotes breast and lung tumour growth in vivo and is expressed on tumour-associated vasculature. Proc. Natl Acad. Sci. USA 104, 15735–15740 (2007).

    Article  CAS  Google Scholar 

  40. Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007).

    Article  CAS  Google Scholar 

  41. Kedde, M. et al. A Pumilio-induced RNA structure switch in p27-3′ UTRcontrols miR-221 and miR-222 accessibility. Nat. Cell Biol. 12, 1014–1020 (2010).

    Article  CAS  Google Scholar 

  42. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  Google Scholar 

  43. Ma, C. et al. Extracellular matrix protein betaig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation. Genes Dev. 22, 308–321 (2008).

    Article  Google Scholar 

  44. Rubin, J. B. et al. A small-molecule antagonist of CXCR4 inhibits intracranialgrowth of primary brain tumours. Proc. Natl Acad. Sci. USA 100, 13513–13518 (2003).

    Article  CAS  Google Scholar 

  45. Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486 (2009).

    Article  CAS  Google Scholar 

  46. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  Google Scholar 

  47. Li, L. C. & Dahiya, R. MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427–1431 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. A. Weinberg, L. M. Wakefield, C. Counter andA. M. Pendergast for providing reagents. We also thank G. J. Markowitz for thoughtful comments on the manuscript. This work was supported by the NIH grant CA151541 to X-F.W., the S. G. Komen For The Cure Foundation grant KG101633 to X-F.W. (PI) and X.X. (Fellow), the Research Scholar Grant RSG-10-157-01-LIB from the American Cancer Society to Q-J.L. and Ministry of Science and Technology Key Program of China 2012ZX10002009-017, National Basic Research Program of China 2010CB912102 to D.X.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., P.Y. and X.W. designed the research; Y.Z. and P.Y. performed most experiments and analysed the results; T.S., X.X., C.L. and M.C. provided further technical assistance; D-J.L. and Y.R. provided technical assistance in luciferase reporter assay and MSCs isolation; T.I., L.M., D.A. and X.L. provided clinical samples and associated analyses; Y.Z. and X-F.W. wrote the manuscript; P.Y., D.X. and Q-J.L. edited the manuscript.

Corresponding authors

Correspondence to Yun Zhang, Pengyuan Yang, Dong Li, Qi-Jing Li or Xiao-Fan Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2344 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yang, P., Sun, T. et al. miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol 15, 284–294 (2013). https://doi.org/10.1038/ncb2690

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2690

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer