Article | Published:

miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis

Nature Cell Biology volume 15, pages 284294 (2013) | Download Citation

Abstract

The tumour stroma is an active participant during cancer progression. Stromal cells promote tumour progression and metastasis through multiple mechanisms including enhancing tumour invasiveness and angiogenesis, and suppressing immune surveillance. We report here that miR-126/miR-126*, a microRNA pair derived from a single precursor, independently suppress the sequential recruitment of mesenchymal stem cells and inflammatory monocytes into the tumour stroma to inhibit lung metastasis by breast tumour cells in a mouse xenograft model. miR-126/miR-126* directly inhibit stromal cell-derived factor-1 alpha (SDF-1α) expression, and indirectly suppress the expression of chemokine (C–C motif) ligand 2 (Ccl2) by cancer cells in an SDF-1α-dependent manner. miR-126/miR-126* expression is downregulated in cancer cells by promoter methylation of their host gene Egfl7. These findings determine how this microRNA pair alters the composition of the primary tumour microenvironment to favour breast cancer metastasis, and demonstrate a correlation between miR-126/126* downregulation and poor metastasis-free survival of breast cancer patients.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. 1.

    , , & Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).

  2. 2.

    , & Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274–284 (2009).

  3. 3.

    & Tumour metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).

  4. 4.

    & A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

  5. 5.

    & Accessories to the crime: functions of cells recruited to the tumour microenvironment. Cancer Cell 21, 309–322 (2012).

  6. 6.

    et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumour growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

  7. 7.

    et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

  8. 8.

    , , & Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov. 2, 840–855 (2012).

  9. 9.

    & Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

  10. 10.

    & Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252 (2009).

  11. 11.

    MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

  12. 12.

    , , , & MicroRNAs–the micro steering wheel of tumour metastases. Nat. Rev. Cancer 9, 293–302 (2009).

  13. 13.

    & Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat. Rev. Cancer 11, 849–864 (2011).

  14. 14.

    et al. A microRNA expression signature of human solid tumours defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

  15. 15.

    , & Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

  16. 16.

    et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147-U143 (2008).

  17. 17.

    , , & A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 481, 190–194 (2012).

  18. 18.

    et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem. Biophys. Res. Commun. 373, 607–612 (2008).

  19. 19.

    et al. The type III TGF-beta receptor suppresses breast cancer progression. J. Clin. Invest. 117, 206–217 (2007).

  20. 20.

    et al. TGF-beta-miR-34a-CCL22 signaling-induced treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 22, 291–303 (2012).

  21. 21.

    et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203–1217 (2006).

  22. 22.

    , , , & The microRNA.org resource: targets and expression. Nucl. Acids Res. 36, D149–D153 (2008).

  23. 23.

    , & Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

  24. 24.

    , , , & Inhibition of microRNA function by antimiR oligonucleotides. Silence 3, 1 (2012).

  25. 25.

    et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. 65, 465–472 (2005).

  26. 26.

    , , , & The chemokine SDF-1 is a chemoattractant for human CD34(+) hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34(+) progenitors to peripheral blood. J. Exp. Med. 185, 111–120 (1997).

  27. 27.

    et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25, 1737–1745 (2007).

  28. 28.

    et al. Stromal cell-derived factor 1/CXCR4 signalling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 60, 813–823 (2009).

  29. 29.

    et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24, 1254–1264 (2006).

  30. 30.

    & A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc. 4, 102–106 (2009).

  31. 31.

    et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 201, 1307–1318 (2005).

  32. 32.

    , , & Recent advances into the understanding of mesenchymal stem cell trafficking. Br. J. Haematol. 137, 491–502 (2007).

  33. 33.

    & Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br. J. Haematol. 123, 702–711 (2003).

  34. 34.

    et al. Characterization of mesenchymal stem cells isolated frommurine bone marrow by negative selection. J. Cell Biochem. 89, 1235–1249 (2003).

  35. 35.

    et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

  36. 36.

    & Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumour. Cancer Res. 52, 1399–1405 (1992).

  37. 37.

    et al. Epigenetic therapy upregulates the tumour suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem. Biophys. Res. Commun. 379, 726–731 (2009).

  38. 38.

    et al. Increased survival, proliferation, and migration in metastatic human pancreatic tumour cells expressing functional CXCR4. Cancer Res. 64, 8420–8427 (2004).

  39. 39.

    et al. CXCR7 (RDC1) promotes breast and lung tumour growth in vivo and is expressed on tumour-associated vasculature. Proc. Natl Acad. Sci. USA 104, 15735–15740 (2007).

  40. 40.

    et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007).

  41. 41.

    et al. A Pumilio-induced RNA structure switch in p27-3′ UTRcontrols miR-221 and miR-222 accessibility. Nat. Cell Biol. 12, 1014–1020 (2010).

  42. 42.

    , & MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

  43. 43.

    et al. Extracellular matrix protein betaig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation. Genes Dev. 22, 308–321 (2008).

  44. 44.

    et al. A small-molecule antagonist of CXCR4 inhibits intracranialgrowth of primary brain tumours. Proc. Natl Acad. Sci. USA 100, 13513–13518 (2003).

  45. 45.

    , , & Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486 (2009).

  46. 46.

    et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

  47. 47.

    & MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427–1431 (2002).

Download references

Acknowledgements

The authors thank R. A. Weinberg, L. M. Wakefield, C. Counter andA. M. Pendergast for providing reagents. We also thank G. J. Markowitz for thoughtful comments on the manuscript. This work was supported by the NIH grant CA151541 to X-F.W., the S. G. Komen For The Cure Foundation grant KG101633 to X-F.W. (PI) and X.X. (Fellow), the Research Scholar Grant RSG-10-157-01-LIB from the American Cancer Society to Q-J.L. and Ministry of Science and Technology Key Program of China 2012ZX10002009-017, National Basic Research Program of China 2010CB912102 to D.X.

Author information

Author notes

    • Yun Zhang
    •  & Pengyuan Yang

    These authors contributed equally to this work

    • Dong Li

    Present address: Department of Oncology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, China

Affiliations

  1. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA

    • Yun Zhang
    • , Pengyuan Yang
    • , Tao Sun
    • , Xin Xu
    • , Mengyang Chong
    •  & Xiao-Fan Wang
  2. Department of Pharmacology, Second Military Medical University, Shanghai 200433, China

    • Pengyuan Yang
    • , Dong Li
    •  & Yaocheng Rui
  3. Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA

    • Chaoran Li
    •  & Qi-Jing Li
  4. Osteoncology and Rare Tumors Center, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (I.R.S.T.), Meldola 47014, Italy

    • Toni Ibrahim
    • , Laura Mercatali
    •  & Dino Amadori
  5. Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, Zhejiang 325027, China

    • Xincheng Lu
  6. Laboratory of Molecular Oncology, Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Shanghai 200031, China

    • Dong Xie

Authors

  1. Search for Yun Zhang in:

  2. Search for Pengyuan Yang in:

  3. Search for Tao Sun in:

  4. Search for Dong Li in:

  5. Search for Xin Xu in:

  6. Search for Yaocheng Rui in:

  7. Search for Chaoran Li in:

  8. Search for Mengyang Chong in:

  9. Search for Toni Ibrahim in:

  10. Search for Laura Mercatali in:

  11. Search for Dino Amadori in:

  12. Search for Xincheng Lu in:

  13. Search for Dong Xie in:

  14. Search for Qi-Jing Li in:

  15. Search for Xiao-Fan Wang in:

Contributions

Y.Z., P.Y. and X.W. designed the research; Y.Z. and P.Y. performed most experiments and analysed the results; T.S., X.X., C.L. and M.C. provided further technical assistance; D-J.L. and Y.R. provided technical assistance in luciferase reporter assay and MSCs isolation; T.I., L.M., D.A. and X.L. provided clinical samples and associated analyses; Y.Z. and X-F.W. wrote the manuscript; P.Y., D.X. and Q-J.L. edited the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Yun Zhang or Pengyuan Yang or Dong Li or Qi-Jing Li or Xiao-Fan Wang.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ncb2690

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing