Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression

Abstract

Despite advances in our understanding of breast cancer, patients with metastatic disease have poor prognoses. GATA3 is a transcription factor that specifies and maintains mammary luminal epithelial cell fate, and its expression is lost in breast cancer, correlating with a worse prognosis in human patients. Here, we show that GATA3 promotes differentiation, suppresses metastasis and alters the tumour microenvironment in breast cancer by inducing microRNA-29b (miR-29b) expression. Accordingly, miR-29b is enriched in luminal breast cancers and loss of miR-29b, even in GATA3-expressing cells, increases metastasis and promotes a mesenchymal phenotype. Mechanistically, miR-29b inhibits metastasis by targeting a network of pro-metastatic regulators involved in angiogenesis, collagen remodelling and proteolysis, including VEGFA, ANGPTL4, PDGF, LOX and MMP9, and targeting ITGA6, ITGB1 and TGFB, thereby indirectly affecting differentiation and epithelial plasticity. The discovery that a GATA3-miR-29b axis regulates the tumour microenvironment and inhibits metastasis opens up possibilities for therapeutic intervention in breast cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: GATA3 suppresses spontaneous and experimental breast cancer metastases to the lungs.
Figure 2: GATA3 induces a more luminal phenotype and suppresses cell migration.
Figure 3: miR-29b is induced by GATA3, enriched in luminal, good prognostic breast cancers, and associated with reduced metastatic potential.
Figure 4: miR-29b promotes luminal characteristics and loss of miR-29b induces a de-differentiated, mesenchymal phenotype.
Figure 5: miR-29b targets pro-metastatic genes involved in remodelling the tumour microenvironment and tumour differentiation.
Figure 6: miR-29b inhibits lung metastasis and loss of miR-29b increases lung metastasis.
Figure 7: miR-29b knockdown increases the level of expression of its target genes and miR-29b suppresses metastasis by repressing four microenvironmental targets.
Figure 8: miR-29b is an important downstream target of GATA3 that mediates its ability to promote luminal differentiation and suppress metastasis.

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

ArrayExpress

Gene Expression Omnibus

References

  1. 1

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Yang, J. & Weinberg, R. A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Chou, J., Provot, S. & Werb, Z. GATA3 in development and cancer differentiation: cells GATA have it! J. Cell Physiol. 222, 42–49 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Asselin-Labat, M. L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat. Cell Biol. 9, 201–209 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127, 1041–1055 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Kouros-Mehr, H. et al. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13, 141–152 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Yoon, N. K. et al. Higher levels of GATA3 predict better survival in women with breast cancer. Hum. Pathol. 41, 1794–1801 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Mehra, R. et al. Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res. 65, 11259–11264 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Jacquemier, J. et al. Association of GATA3, P53, Ki67 status and vascular peritumoral invasion are strongly prognostic in luminal breast cancer. Breast Cancer Res. 11, R23 (2009).

    Article  Google Scholar 

  14. 14

    Usary, J. et al. Mutation of GATA3 in human breast tumors. Oncogene 23, 7669–7678 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Network, C. G. A. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  Google Scholar 

  16. 16

    Asselin-Labat, M. L. et al. Gata-3 negatively regulates the tumor-initiating capacity of mammary luminal progenitor cells and targets the putative tumor suppressor caspase-14. Mol. Cell Biol. 31, 4609–4622 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Ma, L., Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Tavazoie, S. F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Valastyan, S. et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032–1046 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Dore, L. C. et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc. Natl Acad. Sci. USA 105, 3333–3338 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Ibarra, I., Erlich, Y., Muthuswamy, S. K., Sachidanandam, R. & Hannon, G. J. A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev. 21, 3238–3243 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. New Engl. J. Med. 363, 1938–1948 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Debnath, J. & Brugge, J. S. Modelling glandular epithelial cancers in three-dimensional cultures. Nat. Rev. Cancer 5, 675–688 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Lee, G. Y., Kenny, P. A., Lee, E. H. & Bissell, M. J. Three-dimensional culturemodels of normal and malignant breast epithelial cells. Nat. Methods 4, 359–365 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Visvader, J. E. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev. 23, 2563–2577 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Mott, J. L. et al. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-κB. J. Cell Biochem. 110, 1155–1164 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Winbanks, C. E. et al. TGF-β regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. J. Biol. Chem. 286, 13805–13814 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Wang, H. et al. NF-κB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14, 369–381 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Blenkiron, C. et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 8, R214 (2007).

    Article  Google Scholar 

  34. 34

    Buffa, F. M. et al. microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res. 71, 5635–5645 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Enerly, E. et al. miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One 6, e16915 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Zhu, M. et al. Integrated miRNA and mRNA expression profiling of mouse mammary tumor models identifies miRNA signatures associated with mammary tumor lineage. Genome Biol. 12, R77 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Aslakson, C. J. & Miller, F. R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 52, 1399–1405 (1992).

    CAS  PubMed  Google Scholar 

  38. 38

    Dykxhoorn, D. M. et al. miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One 4, e7181 (2009).

    Article  Google Scholar 

  39. 39

    Lin, E. Y. et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol. 163, 2113–2126 (2003).

    Article  Google Scholar 

  40. 40

    Ewald, A. J., Brenot, A., Duong, M., Chan, B. S. & Werb, Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev. Cell 14, 570–581 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    CAS  Article  Google Scholar 

  42. 42

    Betel, D., Wilson, M., Gabow, A., Marks, D. S. & Sander, C. The microRNA.org resource: targets and expression. Nucl. Acids Res. 36, D149–D153 (2008).

    CAS  Article  Google Scholar 

  43. 43

    Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

    CAS  Article  Google Scholar 

  44. 44

    Yu, K. R. et al. CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells 30, 876–887 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Padua, D. et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Yan, W., Cao, Q. J., Arenas, R. B., Bentley, B. & Shao, R. GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J. Biol. Chem. 285, 14042–14051 (2010).

    CAS  Article  Google Scholar 

  47. 47

    Chu, I. M. et al. GATA3 inhibits lysyl oxidase-mediated metastases of human basal triple-negative breast cancer cells. Oncogene 31, 2017–2027 (2012).

    CAS  Article  Google Scholar 

  48. 48

    Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    CAS  Article  Google Scholar 

  49. 49

    Du, R. et al. HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206–220 (2008).

    CAS  Article  Google Scholar 

  50. 50

    van Rooij, E. et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105, 13027–13032 (2008).

    CAS  Article  Google Scholar 

  51. 51

    Roderburg, C. et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53, 209–218 (2010).

    Article  Google Scholar 

  52. 52

    Wang, B. et al. Suppression of microRNA-29 expression by TGF- β1 promotes collagen expression and renal fibrosis. J. Am. Soc. Nephrol. 2, 252–265 (2011).

    Google Scholar 

  53. 53

    Fabbri, M. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA 104, 15805–15810 (2007).

    CAS  Article  Google Scholar 

  54. 54

    Nguyen, T. et al. Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics 6, 388–394 (2010).

    Article  Google Scholar 

  55. 55

    Xiong, Y. et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51, 836–845 (2009).

    Google Scholar 

  56. 56

    Sethi, A., Mao, W., Wordinger, R. J. & Clark, A. F. Transforming growth factor- β induces extracellular matrix protein cross-linking lysyl oxidase (LOX) genes in human trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. 52, 5240–5250 (2011).

    CAS  Article  Google Scholar 

  57. 57

    Dumont, N. & Arteaga, C. L. Transforming growth factor- β and breast cancer: tumor promoting effects of transforming growth factor- β. Breast Cancer Res. 2, 125–132 (2000).

    CAS  Article  Google Scholar 

  58. 58

    Sanchez-Elsner, T. et al. Synergistic cooperation between hypoxia and transforming growth factor- β pathways on human vascular endothelial growth factor gene expression. J. Biol. Chem. 276, 38527–38535 (2001).

    CAS  Article  Google Scholar 

  59. 59

    Hurst, D. R., Edmonds, M. D. & Welch, D. R. Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res. 69, 7495–7498 (2009).

    CAS  Article  Google Scholar 

  60. 60

    Lujambio, A. & Lowe, S. W. The microcosmos of cancer. Nature 482, 347–355 (2012).

    CAS  Article  Google Scholar 

  61. 61

    Ma, L. et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat. Biotechnol. 28, 341–347 (2010).

    CAS  Article  Google Scholar 

  62. 62

    Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009).

    CAS  Article  Google Scholar 

  63. 63

    Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    CAS  Article  Google Scholar 

  64. 64

    Hwang, H. W., Wentzel, E. A. & Mendell, J. T. A hexanucleotide element directs microRNA nuclear import. Science 315, 97–100 (2007).

    CAS  Article  Google Scholar 

  65. 65

    Tong, Q. et al. Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290, 134–138 (2000).

    CAS  Article  Google Scholar 

  66. 66

    Wrana, J. L. et al. TGF β signals through a heteromeric protein kinase receptor complex. Cell 71, 1003–1014 (1992).

    CAS  Article  Google Scholar 

  67. 67

    Zawel, L. et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1, 611–617 (1998).

    CAS  Article  Google Scholar 

  68. 68

    Watnick, R. S., Cheng, Y. N., Rangarajan, A., Ince, T. A. & Weinberg, R. A. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3, 219–231 (2003).

    CAS  Article  Google Scholar 

  69. 69

    Gough, P. J., Gomez, I. G., Wille, P. T. & Raines, E. W. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J. Clin. Invest. 116, 59–69 (2006).

    CAS  Article  Google Scholar 

  70. 70

    Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993–997 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank members of the Werb laboratory for discussions, P. Shahi, J. Dai and J. Tai for experimental assistance and E. Atamaniuc, Y. Yu, and H. Capili for technical assistance. We thank T. Rambaldo and M. Kissner for flow cytometer assistance, the UCSF Biological Imaging Development Center for microscopy assistance, J. Debnath, G. Bergers, and D. Sheppard for discussions, and A. Goga, V. Weaver, J. Mott, P. Gonzalez, K. Xie and E. Raines for reagents. We also thank C. Choi for discussion and support. This research was supported by funds from the National Cancer Institute (R01 CA129523 to Z.W.), a Developmental Research grant from the Bay Area Breast Cancer SPORE (P50 CA058207 to Z.W.), a Department of Defense Predoctoral Fellowship (W81XWH-10-1-0168 to J.C.) and the UCSF Medical Scientist Training Program (J.C.). We dedicate this work to the memory of L. Verber.

Author information

Affiliations

Authors

Contributions

J.H.L. and A.B. contributed equally to this work. J.C. designed and performed experiments, with assistance from J.H.L., A.B., J-w.K. and S.P. Z.W. designed experiments and supervised research. J.C. and Z.W. wrote the manuscript, and all authors discussed the results and provided comments and feedback.

Corresponding author

Correspondence to Zena Werb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1770 kb)

Supplementary Tables 1–5

Supplementary Information (XLS 69 kb)

Time-lapse imaging of MDA231-Control breast cancer cells cultured in 3D Matrigel.

MDA231-Control cells were embedded into growth factor reduced Matrigel after re-aggregation overnight on low adhesion plates. 3D cultures were grown in serum-free media with 2.5 nM FGF2. Cells were imaged using a Zeiss Axiovert inverted brightfield microscope every 20 min for 48 h at 37 °C and 5% CO2. Images were assembled and played at 8 frames s−1. (MOV 824 kb)

Time-lapse imaging of MDA231-GATA3 breast cancer cells cultured in 3D Matrigel.

MDA231-GATA3 cells were embedded into growth factor reduced Matrigel after re-aggregation overnight on low adhesion plates. 3D cultures were grown in serum-free media with 2.5 nM FGF2. Cells were imaged using a Zeiss Axiovert inverted brightfield microscope every 20 min for 48 h at 37 °C and 5% CO2. Images were assembled and played at 8 frames s−1. (MOV 1018 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chou, J., Lin, J., Brenot, A. et al. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 15, 201–213 (2013). https://doi.org/10.1038/ncb2672

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing