Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tracing the cellular origin of cancer

Abstract

Although many genes that lead to different types of cancer when mutated have been identified, the cells that initiate tumour formation following accumulation of these mutations have, until recently, remained elusive. This review explores how mouse genetic lineage-tracing experiments that allow the expression of oncogenes and/or the deletion of tumour suppressor genes in defined cell lineages have been instrumental in defining the cellular origin of different solid tumours in mouse models for various human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic approach to define the cellular origin of epithelial cancers.
Figure 2: Multiple cells of origin in epithelial skin cancers.
Figure 3: Cells of origin in basal-like breast and prostate cancers.
Figure 4: Cells of origin in intestinal and lung cancers.

Similar content being viewed by others

References

  1. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127, 2893–2917 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Stratton, M. R. Exploring the genomes of cancer cells: progress and promise. Science 331, 1553–1558 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Van Keymeulen, A. & Blanpain, C. Tracing epithelial stem cells during development, homeostasis, and repair. J. Cell Biol. 197, 575–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 10, 207–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Levy, V., Lindon, C., Harfe, B. D. & Morgan, B. A. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev. Cell 9, 855–861 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Youssef, K. K. et al. Identification of the cell lineage at the origin of basal cell carcinoma. Nat. Cell Biol. 12, 299–305 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40, 1291–1299 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Snippert, H. J. et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385–1389 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Blanpain, C. Stem cells: Skin regeneration and repair. Nature 464, 686–687 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Doupe, D. P., Klein, A. M., Simons, B. D. & Jones, P. H. The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Dev. Cell 18, 317–323 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Mascre, G. et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489, 257–262 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11, 1351–1354 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Levy, V., Lindon, C., Zheng, Y., Harfe, B. D. & Morgan, B. A. Epidermal stem cells arise from the hair follicle after wounding. FASEB J. 21, 1358–1366 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Lu, C. P. et al. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150, 136–150 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Keymeulen, A. et al. Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J. Cell Biol. 187, 91–100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morrison, K. M., Miesegaes, G. R., Lumpkin, E. A. & Maricich, S. M. Mammalian Merkel cells are descended from the epidermal lineage. Dev. Biol. 336, 76–83 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Owens, D. M. & Watt, F. M. Contribution of stem cells and differentiated cells to epidermal tumours. Nat. Rev. Cancer 3, 444–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Perez-Losada, J. & Balmain, A. Stem-cell hierarchy in skin cancer. Nat. Rev. Cancer 3, 434–443 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Lomas, A., Leonardi-Bee, J. & Bath-Hextall, F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br. J. Dermatol. 166, 1069–1080 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Epstein, E. H. Basal cell carcinomas: attack of the hedgehog. Nat. Rev. Cancer 8, 743–754 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oro, A. E. et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276, 817–821 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Grachtchouk, M. et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat. Genet. 24, 216–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Nilsson, M. et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc. Natl Acad. Sci. USA 97, 3438–3443 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res. 66, 10171–10178 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Youseff, K. K. et al. Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation. Nat. Cell Biol. 14, 1282–1294 (2012).

    Article  CAS  Google Scholar 

  33. Mancuso, M. et al. Hair cycle-dependent basal cell carcinoma tumorigenesis in Ptc1neo67/+ mice exposed to radiation. Cancer Res. 66, 6606–6614 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Adolphe, C., Hetherington, R., Ellis, T. & Wainwright, B. Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res. 66, 2081–2088 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, G. Y., Wang, J., Mancianti, M. L. & Epstein, E. H., Jr . Basal cell carcinomas arise from hair follicle stem cells in Ptch1(±) mice. Cancer Cell 19, 114–124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lapouge, G. et al. Identifying the cellular origin of squamous skin tumors. Proc. Natl Acad. Sci. USA 108, 7431–7436 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sotiropoulou, P. A. et al. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nat. Cell Biol. 12, 572–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Wong, S. Y. & Reiter, J. F. Wounding mobilizes hair follicle stem cells to form tumors. Proc. Natl Acad. Sci. USA 108, 4093–4098 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kasper, M. et al. Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc. Natl Acad. Sci. USA 108, 4099–104 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Grachtchouk, M. et al. Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations. J. Clin. Invest. 121, 1768–1781 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alam, M. & Ratner, D. Cutaneous squamous-cell carcinoma. N. Engl. J. Med. 344, 975–983 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Kemp, C. J. Multistep skin cancer in mice as a model to study the evolution of cancer cells. Semin. Cancer Biol. 15, 460–473 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Abel, E. L., Angel, J. M., Kiguchi, K. & DiGiovanni, J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat. Protoc. 4, 1350–1362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Quintanilla, M., Brown, K., Ramsden, M. & Balmain, A. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322, 78–80 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. Spencer, J. M., Kahn, S. M., Jiang, W., DeLeo, V. A. & Weinstein, I. B. Activated ras genes occur in human actinic keratoses, premalignant precursors to squamous cell carcinomas. Arch. Dermatol. 131, 796–800 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. van der Schroeff, J. G., Evers, L. M., Boot, A. J. & Bos, J. L. Ras oncogene mutations in basal cell carcinomas and squamous cell carcinomas of human skin. J. Invest. Dermatol. 94, 423–5 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Sutter, C. et al. Ras gene activation and aberrant expression of keratin K13 in ultraviolet B radiation-induced epidermal neoplasias of mouse skin. Mol. Carcinogen. 8, 13–9 (1993).

    Article  CAS  Google Scholar 

  49. Morris, R. J., Fischer, S. M. & Slaga, T. J. Evidence that a slowly cycling subpopulation of adult murine epidermal cells retains carcinogen. Cancer Res. 46, 3061–3066 (1986).

    CAS  PubMed  Google Scholar 

  50. Morris, R. J., Coulter, K., Tryson, K. & Steinberg, S. R. Evidence that cutaneous carcinogen-initiated epithelial cells from mice are quiescent rather than actively cycling. Cancer Res. 57, 3436–3443 (1997).

    CAS  PubMed  Google Scholar 

  51. Morris, R. J. Keratinocyte stem cells: targets for cutaneous carcinogens. J. Clin. Invest. 106, 3–8 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Argyris, T. S. & Slaga, T. J. Promotion of carcinomas by repeated abrasion in initiated skin of mice. Cancer Res. 41, 5193–5195 (1981).

    CAS  PubMed  Google Scholar 

  53. Owens, D. M., Romero, M. R., Gardner, C. & Watt, F. M. Suprabasal alpha6beta4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFbeta signalling. J. Cell Sci. 116, 3783–3791 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Hobbs, R. M., Silva-Vargas, V., Groves, R. & Watt, F. M. Expression of activated MEK1 in differentiating epidermal cells is sufficient to generate hyperproliferative and inflammatory skin lesions. J. Invest. Dermatol. 123, 503–515 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Arwert, E. N. et al. Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate. Proc. Natl Acad. Sci. USA 107, 19903–19908 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bailleul, B. et al. Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter. Cell 62, 697–708 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Brown, K., Strathdee, D., Bryson, S., Lambie, W. & Balmain, A. The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr. Biol. 8, 516–524 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Tuveson, D. A. et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. White, A. C. et al. Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proc. Natl Acad. Sci. USA 108, 7425–7430 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li, S. et al. A keratin 15 containing stem cell population from the hair follicle contributes to squamous papilloma development in the mouse. Mol. Carcinogen. http://dx.doi.org/10.1002/mc.21896 (2012).

  61. Kemp, C. J., Donehower, L. A., Bradley, A. & Balmain, A. Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74, 813–822 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Caulin, C. et al. An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. J. Clin. Invest. 117, 1893–1901 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Taylor, M. D. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Yang, Z. J. et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14, 135–45 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schuller, U. et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14, 123–134 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kawauchi, D. et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21, 168–180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pei, Y. et al. An animal model of MYC-driven medulloblastoma. Cancer Cell 21, 155–167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Swartling, F. J. et al. Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell 21, 601–613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jones, D. T. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43–48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pugh, T. J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sotiriou, C. & Piccart, M. J. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat. Rev. Cancer 7, 545–553 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Visvader, J. E. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev. 23, 2563–2577 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Van Amerongen, R., Bowman, A. N. & Nusse, R. Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11, 387–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. De Visser, K. E. et al. Developmental stage-specific contribution of LGR5+ cells to basal and luminal epithelial lineages in the postnatal mammary gland. J. Pathol. 228, 300–309 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Palacios, J. et al. Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Res. Treat. 90, 5–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, X. et al. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc. Natl Acad. Sci. USA 104, 12111–12116 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Molyneux, G. et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7, 403–417 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Lim, E. et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat. Med. 15, 907–913 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Proia, T. A. et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 8, 149–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shen, M. M. & Abate-Shen, C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 24, 1967–2000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Burger, P. E. et al. Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc. Natl Acad. Sci. USA 102, 7180–7185 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Goldstein, A. S., Huang, J., Guo, C., Garraway, I. P. & Witte, O. N. Identification of a cell of origin for human prostate cancer. Science 329, 568–571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lawson, D. A., Xin, L., Lukacs, R. U., Cheng, D. & Witte, O. N. Isolation and functional characterization of murine prostate stem cells. Proc. Natl Acad. Sci. USA 104, 181–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Leong, K. G., Wang, B. E., Johnson, L. & Gao, W. Q. Generation of a prostate from a single adult stem cell. Nature 456, 804–808 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Xin, L., Lawson, D. A. & Witte, O. N. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc. Natl Acad. Sci. USA 102, 6942–6247 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xin, L., Lukacs, R. U., Lawson, D. A., Cheng, D. & Witte, O. N. Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells 25, 2760–2769 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, L. et al. ROCK inhibitor Y-27632 suppresses dissociation-induced apoptosis of murine prostate stem/progenitor cells and increases their cloning efficiency. PLoS ONE 6, e18271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, X. et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495–500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, J. et al. Regenerated luminal epithelial cells are derived from preexisting luminal epithelial cells in adult mouse prostate. Mol. Endocrinol. 25, 1849–1857 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Choi, N., Zhang, B., Zhang, L., Ittmann, M. & Xin, L. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21, 253–265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mulholland, D. J. et al. Lin-Sca-1+CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res. 69, 8555–8562 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lawson, D. A. et al. Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc. Natl Acad. Sci. USA 107, 2610–2615 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ratnacaram, C. K. et al. Temporally controlled ablation of PTEN in adult mouse prostate epithelium generates a model of invasive prostatic adenocarcinoma. Proc. Natl Acad. Sci. USA 105, 2521–2526 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Trotman, L. C. et al. Pten dose dictates cancer progression in the prostate. PLoS Biol 1, E59 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang, S. et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Barker, N., Bartfeld, S. & Clevers, H. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 7, 656–670 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40, 915–920 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Montgomery, R. K. et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc. Natl Acad. Sci. USA 108, 179–184 (2011).

    Article  PubMed  Google Scholar 

  105. Takeda, N. et al. Interconversion between intestinal stem cell populations in distinct niches. Science 334, 1420–1424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Munoz, J. et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. EMBO J. 31, 3079–3091 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Itzkovitz, S. et al. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat. Cell Biol. 14, 106–114 (2012).

    Article  CAS  Google Scholar 

  109. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Morin, P. J. et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Korinek, V. et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    CAS  PubMed  Google Scholar 

  113. Zhu, L. et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457, 603–607 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Rock, J. R. & Hogan, B. L. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu. Rev. Cell Dev. Biol. 27, 493–512 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rawlins, E. L. et al. The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4, 525–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Travis, W. D. Pathology of lung cancer. Clin. Chest Med. 32, 669–692 (2011).

    Article  PubMed  Google Scholar 

  118. Beasley, M. B. et al. The P16/cyclin D1/Rb pathway in neuroendocrine tumors of the lung. Hum. Pathol. 34, 136–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Meuwissen, R. et al. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4, 181–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Sutherland, K. D. et al. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell 19, 754–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Park, K. S. et al. Characterization of the cell of origin for small cell lung cancer. Cell Cycle 10, 2806–2815 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sekido, Y., Fong, K. M. & Minna, J. D. Molecular genetics of lung cancer. Annu. Rev. Med. 54, 73–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim, C. F. et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Ji, H. et al. K-ras activation generates an inflammatory response in lung tumors. Oncogene 25, 2105–2112 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Sunday, M. E. et al. Calcitonin driven v-Ha-ras induces multilineage pulmonary epithelial hyperplasias and neoplasms. Oncogene 18, 4336–47 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Xu, X. et al. Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma. Proc. Natl Acad. Sci. US.A 109, 4910–4915 (2012).

    Article  Google Scholar 

  128. Driessens, G., Beck, B., Caauwe, A., Simons, B. D. & Blanpain, C. Defining the mode of tumour growth by clonal analysis. Nature 488, 527–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730–735 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those whose work could not be cited due to space constraints. C.B. is investigator of WELBIO and is supported by the FNRS, TELEVIE, the program d'excellence CIBLES of the Wallonia Region, Fondation Contre le Cancer, the ULB foundation, the fond Gaston Ithier, a starting grant of the European Research Council (ERC) and the EMBO Young Investigator Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Blanpain.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanpain, C. Tracing the cellular origin of cancer. Nat Cell Biol 15, 126–134 (2013). https://doi.org/10.1038/ncb2657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2657

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer