Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pivoting of microtubules around the spindle pole accelerates kinetochore capture


During cell division, spindle microtubules attach to chromosomes through kinetochores, protein complexes on the chromosome1. The central question is how microtubules find kinetochores. According to the pioneering idea termed search-and-capture, numerous microtubules grow from a centrosome in all directions and by chance capture kinetochores2,3,4. The efficiency of search-and-capture can be improved by a bias in microtubule growth towards the kinetochores5,6, by nucleation of microtubules at the kinetochores7,8,9 and at spindle microtubules10,11, by kinetochore movement9, or by a combination of these processes12,13,14. Here we show in fission yeast that kinetochores are captured by microtubules pivoting around the spindle pole, instead of growing towards the kinetochores. This pivoting motion of microtubules is random and independent of ATP-driven motor activity. By introducing a theoretical model, we show that the measured random movement of microtubules and kinetochores is sufficient to explain the process of kinetochore capture. Our theory predicts that the speed of capture depends mainly on how fast microtubules pivot, which was confirmed experimentally by speeding up and slowing down microtubule pivoting. Thus, pivoting motion allows microtubules to explore space laterally, as they search for targets such as kinetochores.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Kinetics of kinetochore capture and the behaviour of microtubules and kinetochores.
Figure 2: The pivoting motion of microtubules does not depend on ATP.
Figure 3: The model for kinetochore capture based on random angular movement of the microtubule and random movement of the kinetochore.
Figure 4: Comparison between theoretical predictions and experimental data.


  1. 1

    Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 9, 33–46 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Mitchison, T. J. & Kirschner, M. W. Properties of the kinetochore in vitro. II. Microtubule capture and ATP-dependent translocation. J. Cell Biol. 101, 766–777 (1985).

    CAS  Article  Google Scholar 

  3. 3

    Hill, T. L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl Acad. Sci. USA 82, 4404–4408 (1985).

    CAS  Article  Google Scholar 

  4. 4

    Holy, T. E. & Leibler, S. Dynamic instability of microtubules as an efficient way to search in space. Proc. Natl Acad. Sci. USA 91, 5682–5685 (1994).

    CAS  Article  Google Scholar 

  5. 5

    Carazo-Salas, R. E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178–181 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Wollman, R. et al. Efficient chromosome capture requires a bias in the ‘search-and-capture’ process during mitotic-spindle assembly. Curr. Biol. 15, 828–832 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Witt, P. L., Ris, H. & Borisy, G. G. Origin of kinetochore microtubules in Chinese hamster ovary cells. Chromosoma 81, 483–505 (1980).

    CAS  Article  Google Scholar 

  8. 8

    Kitamura, E. et al. Kinetochores generate microtubules with distal plus ends: their roles and limited lifetime in mitosis. Dev. Cell 18, 248–259 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Paul, R. et al. Computer simulations predict that chromosome movements and rotations accelerate mitotic spindle assembly without compromising accuracy. Proc. Natl Acad. Sci. USA 106, 15708–15713 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Burbank, K. S., Groen, A. C., Perlman, Z. E., Fisher, D. S. & Mitchison, T. J. A new method reveals microtubule minus ends throughout the meiotic spindle. J. Cell Biol. 175, 369–375 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Mahoney, N. M., Goshima, G., Douglass, A. D. & Vale, R. D. Making microtubules and mitotic spindles in cells without functional centrosomes. Curr. Biol. 16, 564–569 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Mogilner, A. & Craig, E. Towards a quantitative understanding of mitotic spindle assembly and mechanics. J. Cell Sci. 123, 3435–3445 (2010).

    CAS  Article  Google Scholar 

  13. 13

    O’Connell, C. B. & Khodjakov, A. L. Cooperative mechanisms of mitotic spindle formation. J. Cell Sci. 120, 1717–1722 (2007).

    Article  Google Scholar 

  14. 14

    Duncan, T. & Wakefield, J. G. 50 ways to build a spindle: the complexity of microtubule generation during mitosis. Chromosome Res. 19, 321–333 (2011).

    Article  Google Scholar 

  15. 15

    Funabiki, H., Hagan, I., Uzawa, S. & Yanagida, M. Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J. Cell Biol. 121, 961–976 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Sagolla, M. J., Uzawa, S. & Cande, W. Z. Individual microtubule dynamics contribute to the function of mitotic and cytoplasmic arrays in fission yeast. J. Cell Sci. 116, 4891–4903 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Zimmerman, S., Daga, R. R. & Chang, F. Intra-nuclear microtubules and a mitotic spindle orientation checkpoint. Nat. Cell Biol. 6, 1245–1246 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Gachet, Y. et al. Sister kinetochore recapture in fission yeast occurs by two distinct mechanisms, both requiring Dam1 and Klp2. Mol. Biol. Cell 19, 1646–1662 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Grishchuk, E. L. & McIntosh, J. R. Microtubule depolymerization can drive poleward chromosome motion in fission yeast. EMBO J. 25, 4888–4896 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Tanaka, K. et al. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987–994 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Beinhauer, J. D., Hagan, I. M., Hegemann, J. H. & Fleig, U. Mal3, the fission yeast homologue of the human APC-interacting protein EB-1 is required for microtubule integrity and the maintenance of cell form. J. Cell Biol. 139, 717–728 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Busch, K. E. & Brunner, D. The microtubule plus end-tracking proteins mal3p and tip1p cooperate for cell-end targeting of interphase microtubules. Curr. Biol. 14, 548–559 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Berg, H. C. Random Walks in Biology (Princeton Univ. Press, 1993).

    Google Scholar 

  24. 24

    Masuda, H., Hirano, T., Yanagida, M. & Cande, W. Z. In vitro reactivation ofspindle elongation in fission yeast nuc2 mutant cells. J. Cell Biol. 110, 417–425 (1990).

    CAS  Article  Google Scholar 

  25. 25

    Lee, G. M. Characterization of mitotic motors by their relative sensitivity to AMP-PNP. J. Cell Sci. 94, 425–441 (1989).

    CAS  PubMed  Google Scholar 

  26. 26

    Broersma, S. Rotational diffusion constant of a cylindrical particle. J. Chem. Phys. 32, 1626–1631 (1960).

    CAS  Article  Google Scholar 

  27. 27

    Hunt, A. J., Gittes, F. & Howard, J. The force exerted by a single kinesin molecule against a viscous load. Biophys. J. 67, 766–781 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Tirado, M. M. & de la Torre, J. G. Translational friction coefficients of rigid, symmetric top macromolecules. Application to circular cylinders. J. Chem. Phys. 71, 2581–2587 (1979).

    CAS  Article  Google Scholar 

  29. 29

    Drummond, D. R. & Cross, R. A. Dynamics of interphase microtubules in Schizosaccharomyces pombe. Curr. Biol. 10, 766–775 (2000).

    CAS  Article  Google Scholar 

  30. 30

    Vogel, S. K., Raabe, I., Dereli, A., Maghelli, N. & Tolic-Norrelykke, I. Interphase microtubules determine the initial alignment of the mitotic spindle. Curr. Biol. 17, 438–444 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Gehlen, L. R. et al. Nuclear geometry and rapid mitosis ensure asymmetric episome segregation in yeast. Curr. Biol. 21, 25–33 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).

    CAS  Article  Google Scholar 

  33. 33

    Gopalakrishnan, M. & Govindan, B. S. A first-passage-time theory for search and capture of chromosomes by microtubules in mitosis. Bull. Math. Biol. 73, 2483–2506 (2011).

    Article  Google Scholar 

  34. 34

    Ding, R., McDonald, K. L. & McIntosh, J. R. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J. Cell Biol. 120, 141–151 (1993).

    CAS  Article  Google Scholar 

  35. 35

    Neumann, F. R. & Nurse, P. Nuclear size control in fission yeast. J. Cell Biol. 179, 593–600 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    CAS  Article  Google Scholar 

  37. 37

    Penkett, C. J., Birtle, Z. E. & Bahler, J. Simplified primer design for PCR-based gene targeting and microarray primer database: two web tools for fission yeast. Yeast 23, 921–928 (2006).

    CAS  Article  Google Scholar 

  38. 38

    Forsburg, S. L. & Rhind, N. Basic methods for fission yeast. Yeast 23, 173–183 (2006).

    CAS  Article  Google Scholar 

  39. 39

    Russell, P. & Nurse, P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45, 145–153 (1986).

    CAS  Article  Google Scholar 

Download references


We thank K. Sawin, A. Haese, Y. Caldarelli, E. Guarino, S. Kearsey and the Yeast Genetic Resource Center for strains and plasmids; B. Schroth-Diez from the Light Microscopy Facility of MPI-CBG for help with microscopy; I. Šarić for the drawings; W. Zachariae, S. Grill, J. Howard, D. Cimini, J. Gregan, M. Žanić, E. Paluch, N. Maghelli, M. Coelho and V. Ananthanarayanan for discussions and advice; the German Research Foundation (DFG) and the Human Frontier Science Program (HFSP) for financial support. M.R.C. was supported by a Marie Curie Intra-European Fellowship and D.R-J. by a Humboldt Research Fellowship for Postdoctoral Researchers.

Author information




I.K. carried out all experiments and data analysis, A.N. performed simulations, P.D., M.R.C. and A.H.K. carried out AMP-PNP and FRAP experiments, D.R-J. analysed the data shown in Supplementary Fig. S3b, A.K. developed the tracking software, B.L. and N.P. developed the theory, and I.M.T-N. and N.P. designed the project and wrote the paper.

Corresponding authors

Correspondence to Nenad Pavin or Iva M. Tolić-Nørrelykke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 527 kb)

Supplementary Note

Supplementary Information (PDF 560 kb)

Supplementary Table 1

Supplementary Information (XLSX 9 kb)

Supplementary Table 2

Supplementary Information (XLSX 34 kb)

Capture of a lost kinetochore by the tip of a polar microtubule (end-on attachment).

Live cell microscopy of an S. pombe mitotic cell, expressing tubulin labeled with GFP (green), and the kinetochore protein Ndc80p labeled with tdTomato (magenta); strain AH01 (Supplementary Table S1). Images were acquired at 2 s intervals. The video is displayed at 15 fps. Time of recovery after cold stress is indicated in minutes:seconds. Scale bar represents 1 μm. The movie corresponds to Fig. 1c. (AVI 1446 kb)

Capture of a lost kinetochore by the lateral side of a polar microtubule (lateral attachment).

Live cell microscopy of an S. pombe mitotic cell, expressing tubulin labeled with GFP (green), and the kinetochore protein Ndc80p labeled with tdTomato (magenta); strain AH01 (Supplementary Table S1). Images were acquired at 2 s intervals. The video is displayed at 15 fps. Time of recovery after cold treatment is indicated in minutes:seconds. Scale bar represents 1 μm. The movie corresponds to Fig. 1d. (AVI 1086 kb)

Pivoting of polar microtubules around the SPB in a cell expressing Mal3-GFP.

Live cell microscopy of an S. pombe mitotic cell, expressing Mal3-GFP and Sid4 (SPB marker) labeled with GFP; strain YC001 (Supplementary Table S1). Note that Mal3-GFP visualizes the movement of the microtubule tip, which allows us to observe the pivoting of a growing microtubule. Mal3p is not present at the end of shrinking microtubules. Images were acquired at 250 ms intervals. The green line marks the position used to make the kymograph shown in Supplementary Fig. S3a. The video is displayed at 15 fps. Time is indicated in seconds. Scale bar represents 1 μm. (AVI 1005 kb)

Pivoting of polar microtubules in a cell treated with AMP-PNP.

Live cell microscopy of an S. pombe mitotic cell treated with 50 mM AMP-PNP (strain KI061, Supplementary Table S1). Images were acquired at 2.2 s intervals. The video is displayed at 15 fps. Time from the beginning of AMP-PNP treatment is indicated in minutes:seconds. Scale bar represents 1 μm. The movie corresponds to Fig. 2a. (AVI 3733 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kalinina, I., Nandi, A., Delivani, P. et al. Pivoting of microtubules around the spindle pole accelerates kinetochore capture. Nat Cell Biol 15, 82–87 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing