Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coordinated oscillations in cortical actin and Ca2+ correlate with cycles of vesicle secretion

Abstract

The actin cortex both facilitates and hinders the exocytosis of secretory granules. How cells consolidate these two opposing roles was not well understood. Here we show that antigen activation of mast cells induces oscillations in Ca2+ and PtdIns(4,5)P2 lipid levels that in turn drive cyclic recruitment of N-WASP and cortical actin level oscillations. Experimental and computational analysis argues that vesicle fusion correlates with the observed actin and Ca2+ level oscillations. A vesicle secretion cycle starts with the capture of vesicles by actin when cortical F-actin levels are high, followed by vesicle passage through the cortex when F-actin levels are low, and vesicle fusion with the plasma membrane when Ca2+ levels subsequently increase. Thus, cells employ oscillating levels of Ca2+, PtdIns(4,5)P2 and cortical F-actin to increase secretion efficiency, explaining how the actin cortex can function as a carrier as well as barrier for vesicle secretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depolymerization of cortical F-actin increases the total amount of secreted enzyme but with slower initial kinetics.
Figure 2: Receptor-stimulated cell-wide and local F-actin oscillations.
Figure 3: Oscillations in the PtdIns(4,5)P2 lipid precede F-actin oscillations.
Figure 4: Oscillations in the plasma membrane levels of N-WASP connect PtdIns(4,5)P2 and F-actin oscillations.
Figure 5: Inhibition of N-WASP dynamics inhibits F-actin oscillation without affecting Ca2+ and PtdIns(4,5)P2 oscillations.
Figure 6: Synchronized phase-shifted oscillations of Ca2+, PtdIns(4,5)P2, N-WASP and F-actin.
Figure 7: Mathematical model of how phase-shifted oscillations in cortical F-actin and Ca2+ correlate with a repetitive cycle of vesicle capture, passage and fusion to enhance secretion rates.
Figure 8: Direct measurements of enhancement in secretion due to Ca2+ and F-actin oscillations.

Similar content being viewed by others

References

  1. Morgan, A. & Burgoyne, R. D. Secretory granule exocytosis. Phys. Rev. 82, 581–632 (2003).

    Google Scholar 

  2. Orci, L., Gabbay, K. H. & Malaisse, W. J. Pancreatic β-cell web: its possible role in insulin secretion. Science 175, 1128–1130 (1972).

    Article  CAS  Google Scholar 

  3. Cheek, T. R. & Burgoyne, R. D. Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells. FEBS Lett. 207, 110–114 (1986).

    Article  CAS  Google Scholar 

  4. Koffer, A., Tatham, P. E. & Gomperts, B. D. Changes in the state of actin during the exocytotic reaction of permeabilized rat mast cells. J. Cell Biol. 111, 919–927 (1990).

    Article  CAS  Google Scholar 

  5. Chowdhury, H. H., Popoff, M. R. & Zorec, R. Actin cytoskeleton depolymerization with Clostridium spiroforme toxin enhances the secretory activity of rat melanotrophs. J. Physiol. 521, 389–395 (1999).

    Article  CAS  Google Scholar 

  6. Frigeri, L. & Apgar, J. R. The role of actin microfilaments in the down-regulation of the degranulation response in RBL-2H3 mast cells. J. Immunol. 162, 2243–2250 (1999).

    CAS  PubMed  Google Scholar 

  7. Becker, K. A. & Hart, N. H. Reorganization of filamentous actin and myosin-II in zebrafish eggs correlates temporally and spatially with cortical granule exocytosis. J. Cell Sci. 112, 97–110 (1999).

    CAS  PubMed  Google Scholar 

  8. Nishida, K. et al. FcɛRI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J. Cell Biol. 170, 115–126 (2005).

    Article  CAS  Google Scholar 

  9. Eichler, T. W., Kögel, T., Bukoreshtliev, N. V. & Gerdes, H-H. The role of myosin Va in secretory granule trafficking and exocytosis. Biochem. Soc. Trans. 34, 671–674 (2006).

    Article  CAS  Google Scholar 

  10. Narasimhan, V., Holowka, D. & Baird, B. Microfilaments regulate the rate of exocytosis in rat basophilic leukemia cells. Biochem. Biophys. Res. Commun. 171, 222–229 (1990).

    Article  CAS  Google Scholar 

  11. Li, G. et al. Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets. Mol. Biol. Cell 5, 1199–1213 (1994).

    Article  CAS  Google Scholar 

  12. Oheim, M. & Stühmer, W. Tracking chromaffin granules on their way through the actin cortex. Eur. Biophys. Journal 29, 67–89 (2000).

    Article  CAS  Google Scholar 

  13. Lang, T. et al. Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys. J. 78, 2863–2877 (2000).

    Article  CAS  Google Scholar 

  14. Nightingale, T. D. et al. Actomyosin II contractility expels von Willebrand factor from Weibel-Palade bodies during exocytosis. J. Cell Biol. 194, 613–629 (2011).

    Article  CAS  Google Scholar 

  15. Masedunskas, A. et al. Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy. Proc. Natl Acad. Sci. USA 108, 13552–13557 (2011).

    Article  CAS  Google Scholar 

  16. Rivera, J., Fierro, N. A., Olivera, A. & Suzuki, R. New insights on mast cell activation via the high affinity receptor for IgE. Adv. Immunol. 98, 85–120 (2008).

    Article  CAS  Google Scholar 

  17. Kim, T. D., Eddlestone, G. T., Mahmoud, S. F., Kuchtey, J. & Fewtrell, C. Correlating Ca2+ responses and secretion in individual RBL-2H3 mucosal mast cells. J. Biol. Chem. 272, 31225–31229 (1997).

    Article  CAS  Google Scholar 

  18. Johnson, H. W. & Schell, M. J. Neuronal IP3 3-kinase is an F-actin-bundling protein: role in dendritic targeting and regulation of spine morphology. Mol. Biol. Cell 20, 5166–5180 (2009).

    Article  CAS  Google Scholar 

  19. Rak, G. D., Mace, E. M., Banerjee, P. P., Svitkina, T. & Orange, J. S. Natural killer cell lytic granule secretion occurs through a pervasive actin network at the immune synapse. PLoS Biol. 9, e1001151 (2011).

    Article  CAS  Google Scholar 

  20. Lazarides, E. & Weber, K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc. Natl Acad. Sci. USA 71, 2268–2272 (1974).

    Article  CAS  Google Scholar 

  21. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using microManager. Curr. Protoc. Mol. Biol. Unit14 20, 10.1002/0471142727.mb1420s92(2010).

  22. Snapper, S. B. & Rosen, F. S. The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Annu. Rev. Immunol. 17, 905–929 (1999).

    Article  CAS  Google Scholar 

  23. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).

    Article  CAS  Google Scholar 

  24. Giannone, G. et al. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116, 431–443 (2004).

    Article  CAS  Google Scholar 

  25. Meyer, T. & Stryer, L. Calcium spiking. Annu. Rev. Biophys. Biophys. Chem. 20, 153–174 (1991).

    Article  CAS  Google Scholar 

  26. Chapman, E. R. Synaptotagmin: a Ca(2+) sensor that triggers exocytosis?. Nat. Rev. Mol. Cell Biol. 3, 498–508 (2002).

    Article  CAS  Google Scholar 

  27. Papayannopoulos, V. et al. A polybasic motif allows N-WASP to act as a sensor of PIP(2) density. Mol. Cell 17, 181–191 (2005).

    Article  CAS  Google Scholar 

  28. Janmey, P. A. & Lindberg, U. Cytoskeletal regulation: rich in lipids. Nat. Rev. Mol. Cell Biol. 5, 658–666 (2004).

    Article  CAS  Google Scholar 

  29. Suh, B. C., Inoue, T., Meyer, T. & Hille, B. Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314, 1454–1457 (2006).

    Article  CAS  Google Scholar 

  30. Sheetz, M. P., Sable, J. E. & Dobereiner, H. G. Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Ann. Rev. Biophys. Biomol. Struct. 35, 417–434 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants MH064801 and GM030179 to T.M.

Author information

Authors and Affiliations

Authors

Contributions

T.M. and R.W. designed experiments and wrote the manuscript. R.W. performed all experiments and data analysis.

Corresponding author

Correspondence to T. Meyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1627 kb)

Supplementary Note

Supplementary Information (PDF 85 kb)

Supplementary Movie 1

Supplementary Information (MOV 2341 kb)

Supplementary Movie 2

Supplementary Information (MOV 7932 kb)

Supplementary Movie 3

Supplementary Information (MOV 789 kb)

Supplementary Movie 4

Supplementary Information (MOV 10472 kb)

Supplementary Movie 5

Supplementary Information (MOV 9063 kb)

Supplementary Movie 6

Supplementary Information (AVI 15448 kb)

Supplementary Movie 7

Supplementary Information (AVI 18550 kb)

Supplementary Table 1

Supplementary Information (XLSX 158 kb)

Supplementary Data

Supplementary Information (TXT 1 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollman, R., Meyer, T. Coordinated oscillations in cortical actin and Ca2+ correlate with cycles of vesicle secretion. Nat Cell Biol 14, 1261–1269 (2012). https://doi.org/10.1038/ncb2614

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2614

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing