Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity

Abstract

A number of key regulators of mouse embryonic stem (ES) cell identity, including the transcription factor Nanog, show strong expression fluctuations at the single-cell level. The molecular basis for these fluctuations is unknown. Here we used a genetic complementation strategy to investigate expression changes during transient periods of Nanog downregulation. Employing an integrated approach that includes high-throughput single-cell transcriptional profiling and mathematical modelling, we found that early molecular changes subsequent to Nanog loss are stochastic and reversible. However, analysis also revealed that Nanog loss severely compromises the self-sustaining feedback structure of the ES cell regulatory network. Consequently, these nascent changes soon become consolidated to committed fate decisions in the prolonged absence of Nanog. Consistent with this, we found that exogenous regulation of Nanog-dependent feedback control mechanisms produced a more homogeneous ES cell population. Taken together our results indicate that Nanog-dependent feedback loops have a role in controlling both ES cell fate decisions and population variability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantifying the molecular effects of Nanog fluctuations.
Figure 2: Transcriptome changes during periods of transient Nanog depletion.
Figure 3: Expression changes and promoter occupancy by Nanog.
Figure 4: Gene expression changes are regulated in a highly combinatorial manner.
Figure 5: Single-cell gene expression patterns.
Figure 6: Feedback in the ES cell TRN
Figure 7: Cell–cell variability in wild-type and NanogR populations.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  Google Scholar 

  2. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Article  CAS  Google Scholar 

  3. Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737 (2009).

    Article  CAS  Google Scholar 

  4. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230-U1238 (2007).

    Article  Google Scholar 

  5. Canham, M. A., Sharov, A. A., Ko, M. S. H. & Brickman, J. M. Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLoS Biol. 8, e1000379 (2010).

    Article  Google Scholar 

  6. Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918 (2008).

    Article  CAS  Google Scholar 

  7. Hayashi, K., Lopes, S. M. C. D., Tang, F. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401 (2008).

    Article  CAS  Google Scholar 

  8. Trott, J., Hayashi, K., Surani, A., Babu, M. M. & Martinez-Arias, A. Dissecting ensemble networks in ES cell populations reveals micro-heterogeneity underlying pluripotency. Mol. Biosyst. 8, 744–752 (2012).

    Article  CAS  Google Scholar 

  9. Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).

    Article  CAS  Google Scholar 

  10. Niakan, K. K. et al. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev. 24, 312–326 (2010).

    Article  CAS  Google Scholar 

  11. Singh, A. M., Hamazaki, T., Hankowski, K. E. & Terada, N. A heterogeneous expression pattern for nanog in embryonic stem cells. Stem. Cells 25, 2534–2542 (2007).

    Article  CAS  Google Scholar 

  12. Zalzman, M. et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 464, 858-U866 (2010).

    Article  Google Scholar 

  13. Kalmar, T. et al. Regulated fluctuations in Nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7, e1000149 (2009).

    Article  Google Scholar 

  14. Kobayashi, T. et al. The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev. 1870–1875 (2009).

    Article  CAS  Google Scholar 

  15. Niwa, H., Ogawa, K., Shimosato, D. & Adachi, K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460, 118–122 (2009).

    Article  CAS  Google Scholar 

  16. Arias, A. M. & Brickman, J. M. Gene expression heterogeneities in embryonic stem cell populations: origin and function. Curr. Opin. Cell Biol. 23, 650–656 (2011).

    Article  Google Scholar 

  17. Stewart, M. H., Bendall, S. C., Levadoux-Martin, M. & Bhatia, M. Clonal tracking of hESCs reveals differential contribution to functional assays. Nat. Methods 7, 917-U975 (2010).

    Article  Google Scholar 

  18. Lu, R. et al. Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature 462, 358–U126 (2009).

    Article  Google Scholar 

  19. Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature 442, 533–538 (2006).

    Article  CAS  Google Scholar 

  20. Kim, J., Chu, J. L., Shen, X. H., Wang, J. L. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008).

    Article  CAS  Google Scholar 

  21. Muller, F. J. et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature 455, 401–U455 (2008).

    Article  Google Scholar 

  22. Ramirez, J. M. et al. Brief report: Benchmarking human pluripotent stem cell markers during differentiation into the three germ layers unveils a striking heterogeneity: All markers are not equal. Stem Cells 29, 1469–1474 (2011).

    CAS  PubMed  Google Scholar 

  23. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–U515 (2008).

    Article  Google Scholar 

  24. Aiba, L. et al. Defining developmental potency and cell lineage trajectories by expression profiling of differentiating mouse embryonic stem cells. DNA Res. 16, 73–80 (2009).

    Article  CAS  Google Scholar 

  25. Zhang, X. et al. A role for NANOG in G1 to S transition in human embryonicstem cells through direct binding of CDK6 and CDC25A. J. Cell Biol. 184, 67–82 (2009).

    Article  CAS  Google Scholar 

  26. Muller, F. J. et al. A bioinformatic assay for pluripotency in human cells. Nat. Methods 8, 315–U354 (2011).

    Article  Google Scholar 

  27. Williams, R., Schuldt, B. & Muller, F. J. A guide to stem cell identification: progress and challenges in system-wide predictive testing with complex biomarkers. Bioessays 33, 880–890 (2011).

    Article  CAS  Google Scholar 

  28. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  Google Scholar 

  29. Ramakrishna, S. et al. PEST motif sequence regulating human NANOG for proteasomal degradation. Stem Cells Dev. 20, 1512–1520 (2011).

    Article  Google Scholar 

  30. Xiong, W. & Ferrell, J. E. A positive-feedback-based bistable ’memory module’ that governs a cell fate decision. Nature 426, 460–465 (2003).

    Article  CAS  Google Scholar 

  31. Pina, C. et al. Inferring rules of lineage commitment in haematopoiesis. Nat. Cell Biol. 14, 287–294 (2012).

    Article  CAS  Google Scholar 

  32. Cristianini, N. & Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods (Cambridge Univ. Press, 2000).

    Book  Google Scholar 

  33. Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).

    Article  CAS  Google Scholar 

  34. Smits, W. K., Kuipers, O. P. & Veening, J. W. Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol. 4, 259–271 (2006).

    Article  CAS  Google Scholar 

  35. Ferrell, J. E. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).

    Article  CAS  Google Scholar 

  36. Becskei, A., Seraphin, B. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20, 2528–2535 (2001).

    Article  CAS  Google Scholar 

  37. MacArthur, B. D., Ma’ayan, A. & Lemischka, I. R. Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol. 10, 672–681 (2009).

    Article  CAS  Google Scholar 

  38. MacArthur, B. D., Please, C. P. & Oreffo, R. O. C. Stochasticity and the molecular mechanisms of induced pluripotency. PLoS ONE 3, e3086 (2008).

    Article  Google Scholar 

  39. MacArthur, B. D., Ma’ayan, A. & Lemischka, I. R. Toward stem cell systems biology: From molecules to networks and landscapes. Cold Spring Harb. Symp. Quant. Biol. 73, 211–215 (2008).

    Article  CAS  Google Scholar 

  40. Tigges, M., Marquez-Lago, T. T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009).

    Article  CAS  Google Scholar 

  41. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  Google Scholar 

  42. Glauche, I., Herberg, M. & Roeder, I. Nanog variability and pluripotency regulation of embryonic stem cells—Insights from a mathematical model analysis. PLoS ONE 5, e11238 (2010).

    Article  Google Scholar 

  43. Austin, D. W. et al. Gene network shaping of inherent noise spectra. Nature 439, 608–611 (2006).

    Article  CAS  Google Scholar 

  44. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004).

    Article  CAS  Google Scholar 

  45. Estrada, E. & Rodriguez-Velazquez, J. A. Subgraph centrality in complex networks. Phys. Rev. E 71, 056103 (2005).

    Article  Google Scholar 

  46. Estrada, E. & Hatano, N. Returnability in complex directed networks (digraphs). Linear Algebra Appl. 430, 1886–1896 (2009).

    Article  Google Scholar 

  47. Durinck, S. et al. BioMart and Bioconductor: a powerful link betweenbiological databases and microarray data analysis. Bioinformatics 21, 3439–3440 (2005).

    Article  CAS  Google Scholar 

  48. Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440 (2006).

    Article  CAS  Google Scholar 

  49. Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H. & Young, R. A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 22, 746–755 (2008).

    Article  CAS  Google Scholar 

  50. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  Google Scholar 

  51. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008).

    Article  CAS  Google Scholar 

  52. Mathur, D. et al. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET. Genome Biol. 9 (2008).

    Article  Google Scholar 

  53. Maherali, N. et al. Directly reprogrammed fibroblasts show globalepigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  Google Scholar 

  54. Lee, D. F. et al. Combining competition assays with genetic complementation strategies to dissect mouse embryonic stem cell self-renewal and pluripotency. Nat. Protoc. 7, 729–748 (2012).

    Article  CAS  Google Scholar 

  55. Guo, G. J. et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18, 675–685 (2010).

    Article  CAS  Google Scholar 

  56. O’ Brien, P. C. Robust procedures for testing equality of covariance matrices. Biometrics 48, 819–827 (1992).

    Article  Google Scholar 

  57. Manly, B. F. J. Multivariate Statistic Methods: A Primer (Chapman and Hall/CRC, 2005).

    Google Scholar 

  58. Gower, J. C. Algorithm AS 78: The mediancentre. J. R. Stat. Soc. Ser. C 23, 466–470 (1974).

    Google Scholar 

  59. Harary, F. & Manvel, B. On the number of cycles in a graph. Math. Slovaca 21, 55–63 (1971).

    Google Scholar 

Download references

Acknowledgements

We thank K. Hochedlinger for the Nanog–GFP mouse ES cells53. We gratefully acknowledge funding support by the NIH (GM078465) and NYSTEM (C024410) to I.R.L. and by the NIH (GM095942) and NYSTEM (C026420) to J.W. This work was also supported by an EPSRC Doctoral Training Centre grant (EP/G03690X/1) and an EPSRC 2011/12 Institutional Sponsorship Award (EP/J501530/1).

Author information

Authors and Affiliations

Authors

Contributions

B.D.M., A.S. and I.R.L. designed the project and prepared the manuscript. A.S., M.F. and J.W. performed the experiments. B.D.M., M.L., F.J.M., B.M.S., A.A.S., S.J.R., P.S.S. and A.M. performed the bioinformatic analyses and mathematical modelling. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Ben D. MacArthur, Ana Sevilla or Ihor R. Lemischka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 780 kb)

Supplementary Note 1

Supplementary Information (PDF 2232 kb)

Supplementary Note 2

Supplementary Information (PDF 1724 kb)

Supplementary Tables 1–8

Supplementary Information (XLSX 156 kb)

Supplementary Software

Supplementary Information (ZIP 2809 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacArthur, B., Sevilla, A., Lenz, M. et al. Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity. Nat Cell Biol 14, 1139–1147 (2012). https://doi.org/10.1038/ncb2603

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing