Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Bending membranes

It is widely assumed that peripheral membrane proteins induce intracellular membrane curvature by the asymmetric insertion of a protein segment into the lipid bilayer, or by imposing shape by adhesion of a curved protein domain to the membrane surface. Two papers now provide convincing evidence challenging these views. The first shows that specific assembly of a clathrin protein scaffold, coupled to the membrane, seems to be the most prevalent mechanism for bending a lipid bilayer in a cell. The second reports that membrane crowding, driven by protein–protein interactions, can also drive membrane bending, even in the absence of any protein insertion into the bilayer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms to generate membrane curvature.
Figure 2: Membrane curvature sensors.

References

  1. Helfrich, W. Z. Naturforsch. C: Biochem. Biophys. Biol. Virol. 28, 693–703 (1973).

    Article  CAS  Google Scholar 

  2. Zimmerberg, J. & Kozlov, M. M. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006).

    Article  CAS  Google Scholar 

  3. Harrison, S. C. & Kirchhausen, T. Nature 466, 1048–1049 (2010).

    Article  CAS  Google Scholar 

  4. Kirchhausen, T. Trends Cell Biol. 19, 596–605 (2009).

    Article  CAS  Google Scholar 

  5. McMahon, H. T. & Gallop, J. L. Nature 438, 590–596 (2005).

    Article  CAS  Google Scholar 

  6. Ford, M. G. J. et al. Nature 419, 361–366 (2002).

    Article  CAS  Google Scholar 

  7. Henne, W. M. et al. Science 328, 1281–1284 (2010).

    Article  CAS  Google Scholar 

  8. Dannhauser, P. N. & Ungewickell, E. J. Nat. Cell Biol. 14, 634–639 (2012).

    Article  CAS  Google Scholar 

  9. Stachowiak, J. et al. Nat. Cell Biol. 14, 944–949 (2012).

    Article  CAS  Google Scholar 

  10. Cocucci, E., Aguet, E., Boulant, S. & Kirchhausen, T. Cell 150, 495–507 (2012).

    Article  CAS  Google Scholar 

  11. Umasankar, P. K. et al. Nat. Cell Biol. 14, 488–501 (2012).

    Article  CAS  Google Scholar 

  12. Böcking, T., Aguet, F., Harrison, S. C. & Kirchhausen, T. Nat. Struct. Mol. Biol. 18, 295–301 (2011).

    Article  Google Scholar 

  13. Shibata, Y. et al. Cell 143, 774–788 (2010).

    Article  CAS  Google Scholar 

  14. Bhatia, V. K., Hatzakis, N. S. & Stamou, D. Semin. Cell Dev. Biol. 21, 381–390 (2010).

    Article  CAS  Google Scholar 

  15. Antonny, B. Annu. Rev. Biochem. 80, 101–123 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Kirchhausen.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchhausen, T. Bending membranes. Nat Cell Biol 14, 906–908 (2012). https://doi.org/10.1038/ncb2570

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2570

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing