Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthetic lethality between Rb, p53 and Dicer or miR-17–92 in retinal progenitors suppresses retinoblastoma formation

Abstract

Synthetic lethality is a promising strategy for specific targeting of cancer cells that carry mutations that are absent in normal cells1. This approach may help overcome the challenge associated with targeting dysfunctional tumour suppressors, such as p53 and Rb (refs 1, 2). Here we show that Dicer1 targeting prevents retinoblastoma formation in mice by synthetic lethality with combined inactivation of p53 and Rb. Although Dicer1 functions as a haploinsufficient tumour suppressor, its complete loss of function is selected against during tumorigenesis3,4,5. We show that Dicer1 deficiency is tolerated in Rb-deficient retinal progenitor cells harbouring an intact p53 pathway, but not in the absence of p53. This synthetic lethality is mediated by the oncogenic miR-1792 cluster because its deletion phenocopies Dicer1 loss in this context. miR-17–92 inactivation suppresses retinoblastoma formation in mice and co-silencing of miR-17/20a and p53 cooperatively decreases the viability of human retinoblastoma cells. These data provide an explanation for the selective pressure against loss of Dicer1 during tumorigenesis and a proof-of-concept that targeting miRNAs may potentially represent a general approach for synthetic lethal targeting of cancer cells that harbour specific cancer-inducing genotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mosaic inactivation of Dicer1 in normal and Rb1/p107-deficient retinoblasts does not affect retinogenesis.
Figure 2: Chx10/Rb1/p107-mutant cells are lost on concomitant inactivation of Dicer1 and Trp53.
Figure 3: QKO cells are detected during embryonic development.
Figure 4: Dicer1 is required for retinoblastoma formation in mice.
Figure 5: miR-1792 is required for mouse retinoblastoma development and human retinoblastoma cell survival.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Kaelin, W. G. Jr The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689–698 (2005).

    Article  CAS  Google Scholar 

  2. Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W. & Friend, S. H. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068 (1997).

    Article  CAS  Google Scholar 

  3. Kumar, M. S. et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev. 23, 2700–2704 (2009).

    Article  CAS  Google Scholar 

  4. Lambertz, I. et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell Death Differ. 17, 633–641 (2010).

    Article  CAS  Google Scholar 

  5. Arrate, M. P. et al. MicroRNA biogenesis is required for Myc-Induced B-Cell lymphoma development and survival. Cancer Res. 15, 6083–92 (2010).

    Article  Google Scholar 

  6. Toledo, F. & Wahl, G. M. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 6, 909–923 (2006).

    Article  CAS  Google Scholar 

  7. Laurie, N. A. et al. Inactivation of the p53 pathway in retinoblastoma. Nature 444, 61–66 (2006).

    Article  CAS  Google Scholar 

  8. Xu, X. L. et al. Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell 137, 1018–1031 (2009).

    Article  CAS  Google Scholar 

  9. Conkrite, K., Sundby, M., Mu, D., Mukai, S. & Macpherson, D. Cooperationbetween Rb and Arf in suppressing mouse retinoblastoma. J. Clin. Invest. 122, 1726–1733 (2012).

    Article  CAS  Google Scholar 

  10. Karube, Y. et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 96, 111–115 (2005).

    Article  CAS  Google Scholar 

  11. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673–677 (2007).

    Article  CAS  Google Scholar 

  12. Melo, S. A. et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat. Genet. 41, 365–370 (2009).

    Article  CAS  Google Scholar 

  13. Pampalakis, G., Diamandis, E. P., Katsaros, D. & Sotiropoulou, G. Down-regulation of dicer expression in ovarian cancer tissues. Clin. Biochem. 43, 324–327 (2009).

    Article  Google Scholar 

  14. Hill, D. A. et al. DICER1 mutations in familial pleuropulmonary blastoma. Science 325, 965 (2009).

    Article  CAS  Google Scholar 

  15. Donovan, S. L. & Dyer, M. A. Developmental defects in Rb-deficient retinae. Vision Res. 44, 3323–3333 (2004).

    Article  CAS  Google Scholar 

  16. Rowan, S. & Cepko, C. L. Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev. Biol. 271, 388–402 (2004).

    Article  CAS  Google Scholar 

  17. Damiani, D. et al. Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. J. Neurosci. 28, 4878–4887 (2008).

    Article  CAS  Google Scholar 

  18. Mudhasani, R. et al. Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J. Cell Biol. 181, 1055–1063 (2008).

    Article  CAS  Google Scholar 

  19. Donovan, S. L., Schweers, B., Martins, R., Johnson, D. & Dyer, M. A. Compensation by tumor suppressor genes during retinal development in mice and humans. BMC Biol. 4, 14 (2006) http://dx.doi.org/10.1186/1741-7007-4-14.

    Article  Google Scholar 

  20. Zhang, J., Schweers, B. & Dyer, M. A. The first knockout mouse model of retinoblastoma. Cell Cycle 3, 952–959 (2004).

    CAS  PubMed  Google Scholar 

  21. Brennan, R. C. et al. Targeting the p53 pathway in retinoblastoma with subconjunctival Nutlin-3a. Cancer Res. 71, 4205–4213 (2011).

    Article  CAS  Google Scholar 

  22. Van Haaften, G. & Agami, R. Tumorigenicity of the miR-17-92 cluster distilled. Genes. Dev. 24, 1–4 (2010).

    Article  CAS  Google Scholar 

  23. Aguda, B. D., Kim, Y., Piper-Hunter, M. G., Friedman, A. & Marsh, C. B. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc. Natl Acad. Sci. USA 105, 19678–19683 (2008).

    Article  CAS  Google Scholar 

  24. Yan, H. L. et al. Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J. 28, 2719–2732 (2009).

    Article  CAS  Google Scholar 

  25. Conkrite, K. et al. miR-17–92 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev. 25, 1734–1745 (2011).

    Article  CAS  Google Scholar 

  26. Ventura, A. et al. Targeted deletion reveals essential and overlappingfunctions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875–886 (2008).

    Article  CAS  Google Scholar 

  27. Brough, R., Frankum, J. R., Costa-Cabral, S. & Lord, C. J. Ashworth, (ed.) Searching for synthetic lethality in cancer. Curr. Opin. Genet. Dev. 21, 34–41 (2011).

    Article  CAS  Google Scholar 

  28. Yi, R. et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat. Genet. 38, 356–362 (2006).

    Article  CAS  Google Scholar 

  29. Singh, M. K., Lu, M. M., Massera, D. & Epstein, J. A. MicroRNA-processing enzyme Dicer is required in epicardium for coronary vasculature development. J. Biol. Chem. 286, 41036–41045 (2011).

    Article  CAS  Google Scholar 

  30. O’Rourke, J. R. et al. Essential role for Dicer during skeletal muscle development. Dev. Biol. 311, 359–368 (2007).

    Article  Google Scholar 

  31. Pinter, R. & Hindges, R. Perturbations of microRNA function in mouse dicer mutants produce retinal defects and lead to aberrant axon pathfinding at the optic chiasm. PLoS One 5, e10021 (2010).

    Article  Google Scholar 

  32. Georgi, S. A. & Reh, T. A. Dicer is required for the transition from early to late progenitor state in the developing mouse retina. J. Neurosci. 30, 4048–4061 (2010).

    Article  CAS  Google Scholar 

  33. Sangwan, M. et al. Established and new mouse models reveal E2f1 and Cdk2 dependency of retinoblastoma, and expose effective strategies to block tumor initiation. Oncogenehttp://dx.doi.org/10.1038/onc.2011.654 [Epub ahead of print] (2012).

  34. Mestdagh, P. et al. High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res. 36, e143 (2008).

    Article  Google Scholar 

  35. Mestdagh, P. et al. A novel and universal method for microRNA RT-qPCR data normalization. Gen. Biol. 10, R64 (2009).

    Article  Google Scholar 

  36. Lefever, S. et al. RDML: Structured language and reporting guidelines for real-time quantitative PCR data. Nucleic Acids Res. 37, 2065–2069 (2009).

    Article  CAS  Google Scholar 

  37. Lam, S. et al. Role of Mdm4 in drug sensitivity of breast cancer cells. Oncogene 29, 2415–2426.

Download references

Acknowledgements

We thank O. Van Goethem, H. Stephan and M. Baumann for excellent technical advice and/or assistance. We thank M. Skipper for helpful comments on the manuscript and G. Hannon (Watson School of Biological Sciences, Cold Spring Harbor Laboratory, USA) for providing the Dicer1 floxed mice. This work was supported in part by FWO, the Belgian Foundation against Cancer (BFK), Geconcerteerde Onderzoek Aangelegenheden (GOA, KULeuven, Belgium) and the German Federal Ministry of Education and Research, BMBF (NGFNplus, ENGINE) as well as the EU (FP7, ONCOMIRS, Contract 201102). This publication reflects only the authors’ views. The commission is not liable for any use that may be made of the information herein.

Author information

Authors and Affiliations

Authors

Contributions

D.N. and I.L. performed experimental work, developed the hypothesis, analysed the data and coordinated the project. F.C. and C.K. performed the transfection studies in the human retinoblastoma cells and analysed the data. P.M. performed the miR-profiling experiments and analysed the data. S.J.N. contributed to the design of the miR-inhibition experiments. A.J. generated and characterized the Y79 p53KD cell line. A.S. and J.H.S. provided the human retinoblastoma samples. F.S., J.V., M.A.D., A.S. and J.H.S. discussed the hypothesis and contributed to data interpretation and experimental design. J-C.M. conceived the hypothesis, led the project, interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Jean-Christophe Marine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1176 kb)

Supplementary Table 1

Supplementary Information (XLS 80 kb)

Supplementary Table 2

Supplementary Information (XLS 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nittner, D., Lambertz, I., Clermont, F. et al. Synthetic lethality between Rb, p53 and Dicer or miR-17–92 in retinal progenitors suppresses retinoblastoma formation. Nat Cell Biol 14, 958–965 (2012). https://doi.org/10.1038/ncb2556

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2556

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer