Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis

Abstract

Brassinosteroid and gibberellin promote many similar developmental responses in plants; however, their relationship remains unclear. Here we show that BR and GA act interdependently through a direct interaction between the BR-activated BZR1 and GA-inactivated DELLA transcription regulators. GA promotion of cell elongation required BR signalling, whereas BR or active BZR1 suppressed the GA-deficient dwarf phenotype. DELLAs directly interacted with BZR1 and inhibited BZR1–DNA binding both in vitro and in vivo. Genome-wide analysis defined a BZR1-dependent GA-regulated transcriptome, which is enriched with light-regulated genes and genes involved in cell wall synthesis and photosynthesis/chloroplast function. GA promotion of hypocotyl elongation requires both BZR1 and the phytochrome-interacting factors (PIFs), as well as their common downstream targets encoding the PRE-family helix–loop–helix factors. The results demonstrate that GA releases DELLA-mediated inhibition of BZR1, and that the DELLA–BZR1–PIF4 interaction defines a core transcription module that mediates coordinated growth regulation by GA, BR and light signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BR signalling and BZR1 activity are required for GA promotion of hypocotyl elongation.
Figure 2: RGA interacts with BZR1 and inhibits the DNA-binding activity of BZR1 in vitro and in vivo.
Figure 3: GA and BR co-regulate a large number of genes through DELLAs and BZR1.
Figure 4: BZR1 and PIF4 are required for the GA promotion of hypocotyl elongation.
Figure 5: GA promotion of cell elongation requires the BZR1 and PIF4 targets, PREs.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Depuydt, S. & Hardtke, C. S. Hormone signalling crosstalk in plant growth regulation. Curr. Biol. 21, R365–373 (2011).

    Article  Google Scholar 

  2. Jaillais, Y. & Chory, J. Unraveling the paradoxes of plant hormone signaling integration. Nat. Struct. Mol. Biol. 17, 642–645 (2010).

    Article  CAS  Google Scholar 

  3. Alabadi, D., Gil, J., Blazquez, M. A. & Garcia-Martinez, J. L. Gibberellins repress photomorphogenesis in darkness. Plant Physiol. 134, 1050–1057 (2004).

    Article  CAS  Google Scholar 

  4. Szekeres, M. et al. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85, 171–182 (1996).

    Article  CAS  Google Scholar 

  5. Li, J., Nagpal, P., Vitart, V., McMorris, T. C. & Chory, J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272, 398–401 (1996).

    Article  CAS  Google Scholar 

  6. Steber, C. M. & McCourt, P. A role for brassinosteroids in germination in Arabidopsis. Plant Physiol. 125, 763–769 (2001).

    Article  CAS  Google Scholar 

  7. Tanaka, K. et al. Physiological roles of brassinosteroids in early growth of arabidopsis: brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J. Plant Growth Regul. 22, 259–271 (2003).

    Article  CAS  Google Scholar 

  8. Kim, T. W. & Wang, Z. Y. Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu. Rev. Plant Biol. 61, 681–704 (2010).

    Article  CAS  Google Scholar 

  9. Sun, T. P. The molecular mechanism and evolution of the GA–GID1–DELLA signaling module in plants. Curr. Biol. 21, R338–R345 (2011).

    Article  CAS  Google Scholar 

  10. Kim, T-W., Guan, S., Burlingame, A. L. & Wang, Z-Y. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol. Cell 43, 561–571 (2011).

    Article  CAS  Google Scholar 

  11. Kim, T. W. et al. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11, 1254–1260 (2009).

    Article  CAS  Google Scholar 

  12. Tang, W. et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat. Cell Biol. 13, 124–131 (2011).

    Article  CAS  Google Scholar 

  13. Sun, Y. et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell 19, 765–777 (2010).

    Article  CAS  Google Scholar 

  14. Murase, K., Hirano, Y., Sun, T. P. & Hakoshima, T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456, 459–463 (2008).

    Article  CAS  Google Scholar 

  15. Harberd, N. P., Belfield, E. & Yasumura, Y. The angiosperm gibberellin-GID1–DELLA growth regulatory mechanism: how an ‘inhibitor of an inhibitor’ enables flexible response to fluctuating environments. Plant Cell 21, 1328–1339 (2009).

    Article  CAS  Google Scholar 

  16. Feng, S. et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451, 475–479 (2008).

    Article  CAS  Google Scholar 

  17. De Lucas, M. et al. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484 (2008).

    Article  CAS  Google Scholar 

  18. Hou, X., Lee, L. Y., Xia, K., Yan, Y. & Yu, H. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell 19, 884–894 (2010).

    Article  CAS  Google Scholar 

  19. An, F. et al. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res. 22, 915–927 (2012).

    Article  CAS  Google Scholar 

  20. Arnaud, N. et al. Gibberellins control fruit patterning in Arabidopsis thaliana. Gen. Dev. 24, 2127–2132 (2010).

    Article  CAS  Google Scholar 

  21. Zhang, Z. L. et al. Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proc. Natl Acad. Sci. USA 108, 2160–2165 (2011).

    Article  CAS  Google Scholar 

  22. Leivar, P. & Quail, P. H. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci. 16, 19–28 (2011).

    Article  CAS  Google Scholar 

  23. Nemhauser, J. L., Hong, F. & Chory, J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467–475 (2006).

    Article  CAS  Google Scholar 

  24. Hirano, K. et al. The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J.http://dx.doi.org/10.1111/j.1365-313X.2012.05000.x (2012).

  25. Pysh, L. D., Wysocka-Diller, J. W., Camilleri, C., Bouchez, D. & Benfey, P. N. The GRAS gene family in Arabidopsis: sequence characterization andbasic expression analysis of the SCARECROW-LIKE genes. Plant J. 18, 111–119 (1999).

    Article  CAS  Google Scholar 

  26. Itoh, H., Ueguchi-Tanaka, M., Sato, Y., Ashikari, M. & Matsuoka, M. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14, 57–70 (2002).

    Article  CAS  Google Scholar 

  27. Wang, F. et al. Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system. Plant Cell 21, 2378–2390 (2009).

    Article  CAS  Google Scholar 

  28. Cheminant, S. et al. DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling deetiolation in arabidopsis. Plant Cell 23, 1849–1860 (2011).

    Article  CAS  Google Scholar 

  29. Sekimata, K. et al. A specific and potent inhibitor of brassinosteroid biosynthesis possessing a dioxolane ring. J. Agric. Food Chem. 50, 3486–3490 (2002).

    Article  CAS  Google Scholar 

  30. Oh, E. et al. Interaction between BZR1 and PIF4 integrates brassinosteroid and environment response. Nature. Cell. Biol. http://dx.doi.org/10.1038/ncb2545 (2012).

  31. Leivar, P. et al. Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell 21, 3535–3553 (2009).

    Article  CAS  Google Scholar 

  32. Lee, S. et al. Overexpression of PRE1 and its homologous genes activates Gibberellin-dependent responses in Arabidopsis thaliana. Plant Cell Physiol. 47, 591–600 (2006).

    Article  CAS  Google Scholar 

  33. Zhang, L. Y. et al. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 21, 3767–3780 (2009).

    Article  CAS  Google Scholar 

  34. Chapman, E. J. et al. Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and -independent pathways. PLoS One 7, e36210 (2012).

    Article  CAS  Google Scholar 

  35. Wang, H., Zhu, Y., Fujioka, S., Asami, T. & Li, J. Regulation of Arabidopsis brassinosteroid signaling by atypical basic helix–loop–helix proteins. Plant Cell 21, 3781–3791 (2009).

    Article  CAS  Google Scholar 

  36. Hyun, Y. & Lee, I. KIDARI, encoding a non-DNA binding bHLH protein, represses light signal transduction in Arabidopsis thaliana. Plant Mol. Biol. 61, 283–296 (2006).

    Article  CAS  Google Scholar 

  37. Cosgrove, D. J. Loosening of plant cell walls by expansins. Nature 407, 321–326 (2000).

    Article  CAS  Google Scholar 

  38. Achard, P. et al. Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91–94 (2006).

    Article  CAS  Google Scholar 

  39. Bauer, D. et al. Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 16, 1433–1445 (2004).

    Article  CAS  Google Scholar 

  40. Koini, M. A. et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 19, 408–413 (2009).

    Article  CAS  Google Scholar 

  41. Nozue, K. et al. Rhythmic growth explained by coincidence between internal and external cues. Nature 448, 358–361 (2007).

    Article  CAS  Google Scholar 

  42. Park, E. et al. Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiol. 45, 968–975 (2004).

    Article  CAS  Google Scholar 

  43. Achard, P., Renou, J. P., Berthome, R., Harberd, N. P. & Genschik, P. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol. 18, 656–660 (2008).

    Article  CAS  Google Scholar 

  44. Achard, P., Vriezen, W. H., Van Der Straeten, D. & Harberd, N. P. Ethylene regulates arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15, 2816–2825 (2003).

    Article  CAS  Google Scholar 

  45. Fu, X. & Harberd, N. P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743 (2003).

    Article  CAS  Google Scholar 

  46. Yang, D. L. et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl Acad. Sci. USA 109, E1192–E1200 (2012).

    Article  CAS  Google Scholar 

  47. Wang, Z. Y. et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell 2, 505–513 (2002).

    Article  CAS  Google Scholar 

  48. Dill, A., Thomas, S. G., Hu, J., Steber, C. M. & Sun, T. P. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 16, 1392–1405 (2004).

    Article  CAS  Google Scholar 

  49. Vert, G. & Chory, J. Downstream nuclear events in brassinosteroid signalling. Nature 441, 96–100 (2006).

    Article  CAS  Google Scholar 

  50. Wu, F. H. et al. Tape-Arabidopsis Sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16 (2009).

    Article  Google Scholar 

  51. Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    Article  CAS  Google Scholar 

  52. Hellens, R. P. et al. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13 (2005).

    Article  Google Scholar 

  53. Trapnell, C., Pachter, S. L., L, & Salzberg, TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  Google Scholar 

  54. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank X. W. Deng (Department of Molecular, Cellular, and Developmental Biology, Yale University) for providing seeds of the della pentuple mutant. This study was supported by grants from the NIH (R01GM066258 to Z.Y.W.) and from the NSF (MCB-0923723 to T.P.S.). J-X.S. was supported by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

M-Y.B. and Z-Y.W. together designed the experiments. M-Y.B. performed statistical analysis of plant growth, ChIP–qPCR, DNA-binding assay, RNA-Seq, RT–qPCR and together with E.O. and Y.B. analysed microarray and RNA-Seq data.J-X.S. performed the yeast two-hybrid, co-immunoprecipitation, protein–protein pulldown, transient expression assays and generated bzr1-1D/ga1-3. E.O. analysed bzr1-1D/PIF4-Ox and bzr1-1D/pifq. M.F. analysed the GA responses of IBH1-Ox. R.Z. performed RGA protein degradation studies. T-p.S. provided sly1-10 seeds and helped with critical discussion on the work. M-Y.B. performed all other experiments. M-Y.B. and Z-Y.W. wrote the manuscript.

Corresponding author

Correspondence to Zhi-Yong Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 844 kb)

Supplementary Table 1

Supplementary Information (XLS 57 kb)

Supplementary Table 2

Supplementary Information (XLS 494 kb)

Supplementary Table 3

Supplementary Information (XLS 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, MY., Shang, JX., Oh, E. et al. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14, 810–817 (2012). https://doi.org/10.1038/ncb2546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2546

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing