Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells

Abstract

The formation of epithelial tissues requires both the generation of apical–basal polarity and the coordination of this polarity between neighbouring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to the formation of a singular apical membrane, resulting in the contribution of each cell to only a single lumen. Here, from a functional screen for genes required for three-dimensional epithelial architecture, we identify key roles for synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in the generation of a single apical surface per cell. Slp2-a localizes to the luminal membrane in a PtdIns(4,5)P2-dependent manner, where it targets Rab27-loaded vesicles to initiate a single lumen. Vesicle tethering and fusion is controlled by Slp4-a, in conjunction with Rab27/Rab3/Rab8 and the SNARE syntaxin-3. Together, Slp2-a/4-a coordinate the spatiotemporal organization of vectorial apical transport to ensure that only a single apical surface, and thus the formation of a single lumen, occurs per cell.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A screen for regulators of 3D epithelial polarization.
Figure 2: Slp2-a is required for epithelial morphogenesis.
Figure 3: Slp2-a requires SHD and C2A/B domains for correct localization.
Figure 4: Slp2-a binds Rab27 to form the apical membrane.
Figure 5: Slp4-a is required for epithelial morphogenesis.
Figure 6: Slp4-a binding to the plasma membrane, Rabs and Stx3 is required for apical membrane formation.
Figure 7: Slp2-a regulates Slp4-a targeting to determine single apical membrane formation.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. 1

    Mostov, K., Su, T. & ter Beest, M. Polarized epithelial membrane traffic: conservation and plasticity. Nat. Cell Biol. 5, 287–293 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Rodriguez-Boulan, E., Musch, A. & Le Bivic, A. Epithelial trafficking: new routes to familiar places. Curr. Opin. Cell Biol. 16, 436–442 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell Biol. 9, 887–901 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Datta, A., Bryant, D. M. & Mostov, K. E. Molecular regulation of lumen morphogenesis. Curr. Biol. 21, R126–R136 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Lubarsky, B. & Krasnow, M. A. Tube morphogenesis: making and shaping biological tubes. Cell 112, 19–28 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Roland, J. T. et al. Rab GTPase-Myo5B complexes control membrane recycling and epithelial polarization. Proc. Natl Acad. Sci. USA 108, 2789–2794 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Bryant, D. M. et al. A molecular network for de novo generation of the apical surface and lumen. Nat. Cell Biol. 12, 1035–1045 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Gassama-Diagne, A. et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat. Cell Biol. 8, 963–970 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Kuroda, T. S., Fukuda, M., Ariga, H. & Mikoshiba, K. The Slp homology domain of synaptotagmin-like proteins 1-4 and Slac2 functions as a novel Rab27A binding domain. J. Biol. Chem. 277, 9212–9218 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Ishii, N. et al. A case of recurrent gall bladder cancer responding to chemotherapy with gemcitabine after endoscopic metallic biliary stent implantation. Gan To Kagaku Ryoho 35, 1403–1405 (2008).

    PubMed  Google Scholar 

  12. 12

    Pilot, F., Philippe, J. M., Lemmers, C. & Lecuit, T. Spatial control of actin organization at adherens junctions by a synaptotagmin-like protein. Nature 442, 580–584 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Bagnat, M., Cheung, I. D., Mostov, K. E. & Stainier, D. Y. Genetic control of single lumen formation in the zebrafish gut. Nat. Cell Biol. 9, 954–960 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Brady, D. C., Alan, J. K., Madigan, J. P., Fanning, A. S. & Cox, A. D. The transforming ρ family GTPase Wrch-1 disrupts epithelial cell tight junctions and epithelial morphogenesis. Mol. Cell Biol. 29, 1035–1049 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Holt, O. et al. Slp1 and Slp2-a localize to the plasma membrane of CTL and contribute to secretion from the immunological synapse. Traffic 9, 446–457 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Kuroda, T. S. & Fukuda, M. Rab27A-binding protein Slp2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes. Nat. Cell Biol. 6, 1195–1203 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Yu, M. et al. Exophilin4/Slp2-a targets glucagon granules to the plasma membrane through unique Ca2+-inhibitory phospholipid-binding activity of the C2A domain. Mol. Biol. Cell 18, 688–696 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Sato, T. et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 448, 366–369 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Fukuda, M., Saegusa, C. & Mikoshiba, K. Novel splicing isoforms of synaptotagmin-like proteins 2 and 3: identification of the Slp homology domain. Biochem. Biophys. Res. Commun. 283, 513–519 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Chavas, L. M. et al. Elucidation of Rab27 recruitment by its effectors: structure of Rab27a bound to Exophilin4/Slp2-a. Structure 16, 1468–1477 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Fukuda, M. Versatile role of Rab27 in membrane trafficking: focus on the Rab27 effector families. J. Biochem. 137, 9–16 (2005).

    Article  Google Scholar 

  22. 22

    Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 7112, 651–657 (2006).

    Article  Google Scholar 

  23. 23

    Zoncu, R. et al. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc. Natl Acad. Sci. USA 104, 3793–3798 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Bolasco, G. et al. Loss of Rab27 function results in abnormal lung epithelium structure in mice. Am. J. Physiol. Cell Physiol. 300, 466–476 (2011).

    Article  Google Scholar 

  25. 25

    van IJzendoorn, S. C., Tuvim, M. J., Weimbs, T., Dickey, B. F. & Mostov, K. E. Direct interaction between Rab3b and the polymeric immunoglobulin receptorcontrols ligand-stimulated transcytosis in epithelial cells. Dev. Cell 2, 219–228 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Schlülter, O. M., Schmitz, F., Jahn, R., Rosenmund, C. & Südhof, T. C. A complete genetic analysis of neuronal Rab3 function. J. Neurosci. 24, 6629–6637 (2004).

    Article  Google Scholar 

  27. 27

    Fukuda, M., Kanno, E., Saegusa, C., Ogata, Y. & Kuroda, T. S. Slp4-a/granuphilin-a regulates dense-core vesicle exocytosis in PC12 cells. J. Biol. Chem. 277, 39673–39678 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Tsuboi, T. & Fukuda, M. The Slp4-a linker domain controls exocytosis through interaction with Munc18-1.syntaxin-1a complex. Mol. Biol. Cell 17, 2101–2112 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Fukuda, M., Imai, A., Nashida, T. & Shimomura, H. Slp4-a/granuphilin-a interacts with syntaxin-2/3 in a Munc18-2-dependent manner. J. Biol. Chem. 280, 39175–39184 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Low, S. H. et al. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J. Cell Biol. 141, 1503–1513 (1998).

    CAS  Article  Google Scholar 

  31. 31

    Schluter, M. A. et al. Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. Mol. Biol. Cell 20, 4652–4663 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Gomi, H., Mizutani, S., Kasai, K., Itohara, S. & Izumi, T. Granuphilin molecularly docks insulin granules to the fusion machinery. J. Cell Biol. 171, 99–109 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Imai, A., Yoshie, S., Nashida, T., Shimomura, H. & Fukuda, M. The small GTPase Rab27B regulates amylase release from rat parotid acinar cells. J. Cell Sci. 117, 1945–1953 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Rodriguez-Fraticelli, A. E. et al. The Cdc42 GEF Intersectin 2 controls mitotic spindle orientation to form the lumen during epithelial morphogenesis. J. Cell Biol. 189, 725–738 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Schuck, S., Manninen, A., Honsho, M., Fullekrug, J. & Simons, K. Generation of single and double knockdowns in polarized epithelial cells by retrovirus-mediated RNA interference. Proc. Natl Acad. Sci. USA 101, 4912–4917 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Fukuda, M. & Kanno, E. Analysis of the role of Rab27 effector Slp4-a/Granuphilin-a in dense-core vesicle exocytosis. Methods Enzymol. 403, 445–457 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. M. Ruiz-Jarabo for comments on the manuscript, and members of the Martin-Belmonte laboratory for discussion. We thank M. ter Beest, J. Peränen, and K. Simons, Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany, for generous gifts of reagents, and the Mostov laboratory for kind assistance. This work was supported by grants from the Human Frontiers Science Program (HFSP-CDA 00011/2009), Marie Curie (IRG-209382), MICINN (BFU2008-01916), (BFU2011-22622) and CONSOLIDER (CSD2009-00016) to F.M-B.; by NIH R01DK074398, R01AI25144 and R01DK91530 to K.M., and The March of Dimes Basil O’Connor Starter Research Award to P.R.B. A.E.R-F. is the recipient of a JAE fellowship, from CSIC; M.G-S. is the recipient of a FPI fellowship, from MICINN; and I.B-R. is the recipient of an AECC fellowship. An institutional Grant from the Fundación Ramón Areces to CBMSO is also acknowledged.

Author information

Affiliations

Authors

Contributions

M.G-S., A.E.R-F., D.M.B., S.V. and F.M-B. designed the experiments. M.G-S., A.E.R-F., D.M.B., S.V., T.S., I.B.R., I.B., A.D., N.S., K.Y. and C.L.S. did the experimental work. M.G-S., A.E.R-F., D.M.B., K.E.M. and F.M-B. analysed the experiments. P.R.B. and M.F. provided reagents. F.M-B., D.M.B. M.G-S. and A.E.R-F. wrote the manuscript.

Corresponding author

Correspondence to Fernando Martín-Belmonte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4419 kb)

Supplementary Table 1

Supplementary Information (XLS 92 kb)

Supplementary Table 2

Supplementary Information (XLS 29 kb)

Supplementary Table 3

Supplementary Information (XLS 20 kb)

Supplementary Video 1

Supplementary Information (AVI 1706 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gálvez-Santisteban, M., Rodriguez-Fraticelli, A., Bryant, D. et al. Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells. Nat Cell Biol 14, 838–849 (2012). https://doi.org/10.1038/ncb2541

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing