Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy

Abstract

The PI(3)K–PKB–FOXO signalling network provides a major intracellular hub for the regulation of cell proliferation, survival and stress resistance. Here we report an unexpected role for FOXO transcription factors in regulating autophagy by modulating intracellular glutamine levels. To identify transcriptional targets of this network, we performed global transcriptional analyses after conditional activation of the key components PI(3)K, PKB/Akt, FOXO3 and FOXO4. Using this pathway approach, we identified glutamine synthetase as being transcriptionally regulated by PI(3)K–PKB–FOXO signalling. Conditional activation of FOXO also led to an increased level of glutamine production. FOXO activation resulted in mTOR inhibition by preventing the translocation of mTOR to lysosomal membranes in a glutamine-synthetase-dependent manner. This resulted in an increased level of autophagy as measured by LC3 lipidation, p62 degradation and fluorescent imaging of multiple autophagosomal markers. Inhibition of FOXO3-mediated autophagy increased the level of apoptosis, suggesting that the induction of autophagy by FOXO3-mediated glutamine synthetase expression is important for cellular survival. These findings reveal a growth-factor-responsive network that can directly modulate autophagy through the regulation of glutamine metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of the PI(3)K–PKB–FOXO signalling network results in regulation of glutamine synthetase mRNA and protein levels.
Figure 2: FOXO-mediated regulation of glutamine synthetase expression is transcriptionally regulated and evolutionarily conserved.
Figure 3: Modulation of the PI(3)K–PKB–FOXO pathway results in specific regulation of glutamine levels.
Figure 4: Regulation of glutamine synthetase expression by PI(3)K–PKB–FOXO inhibits mTOR and modulates autophagy.
Figure 5: FOXO-induced glutamine synthetase expression increases the level of autophagy.
Figure 6: FOXO-mediated glutamine synthetase activation induces autophagosome formation and increases the level of survival.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Burgering, B. M. & Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Stephens, L. et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279, 710–714 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Calnan, D. R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Dorman, J. B., Albinder, B., Shroyer, T. & Kenyon, C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141, 1399–1406 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12, 2488–2498 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dansen, T. B. & Burgering, B. M. Unravelling the tumor-suppressive functions of FOXO proteins. Trends Cell Biol. 18, 421–429 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Kops, G. J. et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell Biol. 22, 2025–2036 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tran, H. et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296, 530–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Delpuech, O. et al. Induction of Mxi1-SR alpha by FOXO3a contributes to repression of Myc-dependent gene expression. Mol. Cell Biol. 27, 4917–4930 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mei, Y. et al. FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation. Proc. Natl Acad. Sci. USA 106, 5153–5158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van der Vos, K. E. & Coffer, P. J. The extending network of FOXO transcriptional target genes. Antioxid. Redox. Signal. 14, 579–592 (2010).

    Article  PubMed  Google Scholar 

  13. Eisenberg, D., Gill, H. S., Pfluegl, G. M. & Rotstein, S. H. Structure-function relationships of glutamine synthetases. Biochim. Biophys. Acta 1477, 122–145 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Berlicki, L. Inhibitors of glutamine synthetase and their potential application in medicine. Mini. Rev. Med. Chem. 8, 869–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. DeBerardinis, R.J. & Cheng, T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Sancak, Y. et al. Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blommaart, E. F., Luiken, J. J., Blommaart, P. J., van Woerkom, G. M. & Meijer, A. J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem. 270, 2320–2326 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Mortimore, G. E. & Schworer, C. M. Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 270, 174–176 (1977).

    Article  CAS  PubMed  Google Scholar 

  20. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rubinsztein, D. C. et al. In search of an ‘autophagomometer’. Autophagy 5, 585–589 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Proikas-Cezanne, T., Ruckerbauer, S., Stierhof, Y. D., Berg, C. & Nordheim, A. Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy. FEBS Lett. 581, 3396–3404 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Codogno, P., Mehrpour, M. & Proikas-Cezanne, T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13, 7–12 (2011).

    Article  PubMed  Google Scholar 

  24. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458–471 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, J. et al. FoxO3 coordinately activates protein degradation by the a utophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Xu, P., Das, M., Reilly, J. & Davis, R. J. JNK regulates FoxO-dependent autophagy in neurons. Genes Dev. 25, 310–322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, Y. et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol. 12, 665–675 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Cheong, H., Lindsten, T., Wu, J., Lu, C. & Thompson, C. B. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc. Natl Acad. Sci. USA 108, 11121–11126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eng, C. H., Yu, K., Lucas, J., White, E. & Abraham, R. T. Ammonia derivedfrom glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 3, ra31 (2010).

    PubMed  Google Scholar 

  33. Pattingre, S., Espert, L., Biard-Piechaczyk, M. & Codogno, P. Regulation ofmacroautophagy by mTOR and Beclin 1 complexes. Biochimie 90, 313–323 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seglen, P. O. & Gordon, P. B. Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes. J. Cell Biol. 99, 435–444 (1984).

    Article  CAS  PubMed  Google Scholar 

  36. Schworer, C. M. & Mortimore, G. E. Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc. Natl Acad. Sci. USA 76, 3169–3173 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krause, U., Bertrand, L., Maisin, L., Rosa, M. & Hue, L. Signalling pathways and combinatory effects of insulin and amino acids in isolated rat hepatocytes. Eur. J. Biochem. 269, 3742–3750 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Gebhardt, R. & Mecke, D. Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J. 2, 567–570 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sakiyama, T., Musch, M. W., Ropeleski, M. J., Tsubouchi, H. & Chang, E. B. Glutamine increases autophagy under Basal and stressed conditions in intestinal epithelial cells. Gastroenterology 136, 924–932 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, M. & Klionsky, D. J. AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab. 13, 119–120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tardito, S. et al. The non-proteinogenic amino acids L: -methionine sulfoximine and DL: -phosphinothricin activate mTOR. Amino Acids 42, 2507–2512 (2011).

    Article  PubMed  Google Scholar 

  42. Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. White, E. & DiPaola, R. S. The double-edged sword of autophagy modulation in cancer. Clin. Cancer Res. 15, 5308–5316 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dijkers, P. F., Medema, R. H., Lammers, J. W., Koenderman, L. & Coffer, P. J. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr. Biol. 10, 1201–1204 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Dijkers, P. F. et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol. Cell Biol. 20, 9138–9148 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fahrner, J. et al. Identification and functional characterization of regulatory elements of the glutamine synthetase gene from rat liver. Eur. J. Biochem. 213, 1067–1073 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Gaunitz, F., Weber, S., Scheja, L. & Gebhardt, R. Identification of a cis-acting element and a novel trans-acting factor of the glutamine synthetase gene in liver cells. Biochem. Biophys. Res. Commun. 284, 377–383 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Pfisterer, S. G., Mauthe, M., Codogno, P. & Proikas-Cezanne, T. Ca2+/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy. Mol. Pharmacol. 80, 1066–1075 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Caldenhoven, E. et al. Activation of the STAT3/acute phase response factor transcription factor by interleukin-5. J. Biol. Chem. 270, 25778–25784 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Raaben, M. et al. Improved microarray gene expression profiling of virus-infected cells after removal of viral RNA. BMC Genom. 9, 221 (2008).

    Article  Google Scholar 

  51. Deuel, T. F., Louie, M. & Lerner, A. Glutamine synthetase from rat liver. Purification, properties, and preparation of specific antisera. J. Biol. Chem. 253, 6111–6118 (1978).

    CAS  PubMed  Google Scholar 

  52. Guthke, R. et al. Dynamics of amino acid metabolism of primary human liver cells in 3D bioreactors. Bioprocess. Biosyst. Eng. 28, 331–340 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lewis, J. A. & Fleming, J. T. Basic culture methods. Methods Cell Biol. 48, 3–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C. daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Korswagen for helpful discussions. K.E.v.d.V. was supported by a grant from the Dutch Scientific Organisation (NWO-VIDI), R.G. was supported by grants (0313081F and 0315735, Virtual Liver) from the German Federal Ministry of Education and Research (BMBF), T.P-C. was supported by the German Research Foundation (DFG; SFB 773, A03), R.v.B. was supported by a grant from CTMM and L.P.V. was supported by a grant from NIRM.

Author information

Authors and Affiliations

Authors

Contributions

K.E.v.d.V. was involved in experimental strategy and design, performed experiments, analysed data and wrote the paper. P.E., S.J.V., R.v.B., M.P., I.J.v.Z., M.M., S.Z., C.P., L.P.V., M.J.A.G.K., A.K.B. and T.B.D. performed experiments. T.P-C., F.C.H., R.G. and B.M.B. were involved in experimental design. P.J.C. was involved in experimental strategy and design and wrote the paper.

Corresponding author

Correspondence to Paul J. Coffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 539 kb)

Supplementary Table 1

Supplementary Information (XLS 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Vos, K., Eliasson, P., Proikas-Cezanne, T. et al. Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy. Nat Cell Biol 14, 829–837 (2012). https://doi.org/10.1038/ncb2536

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2536

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing