Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor

Abstract

The stability and membrane localization of the transforming growth factor-β (TGF-β) type I receptor (TβRI) determines the levels of TGF-β signalling. TβRI is targeted for ubiquitylation-mediated degradation by the SMAD7–SMURF2 complex. Here we performed a genome-wide gain-of-function screen and identified ubiquitin-specific protease (USP) 4 as a strong inducer of TGF-β signalling. USP4 was found to directly interact with TβRI and act as a deubiquitylating enzyme, thereby controlling TβRI levels at the plasma membrane. Depletion of USP4 mitigates TGF-β-induced epithelial to mesenchymal transition and metastasis. Importantly, AKT (also known as protein kinase B), which has been associated with poor prognosis in breast cancer, directly associates with and phosphorylates USP4. AKT-mediated phosphorylation relocates nuclear USP4 to the cytoplasm and membrane and is required for maintaining its protein stability. Moreover, AKT-induced breast cancer cell migration was inhibited by USP4 depletion and TβRI kinase inhibition. Our results uncover USP4 as an important determinant for crosstalk between TGF-β and AKT signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: USP4 is a DUB required for TGF-β signalling.
Figure 2: USP4 interacts with TβRI and deubiquitylates TβRI.
Figure 3: USP4 stabilizes membrane receptor levels of TβRI.
Figure 4: USP4 increases TGF-β-induced EMT, invasion and metastasis.
Figure 5: AKT phosphorylates USP4.
Figure 6: AKT activation promotes the membrane and cytoplasmic localization of USP4.
Figure 7: AKT-mediated phosphorylation affects USP4 stability and DUB activity towards TβRI.

Similar content being viewed by others

Accession codes

Primary accessions

PubChem Assay

References

  1. Moustakas, A. & Heldin, C. H. The regulation of TGFβ signal transduction. Development 136, 3699–3714 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Kang, J. S., Liu, C. & Derynck, R. New regulatory mechanisms of TGF-β receptor function. Trends Cell Biol. 19, 385–394 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Ikushima, H. & Miyazono, K. TGFβ signalling: a complex web in cancer progression. Nat. Rev. Cancer 10, 415–424 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Massague, J. TGFβ in cancer. Cell 134, 215–230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L. & Arteaga, C. L. Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 275, 36803–36810 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Muraoka, R. S. et al. Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J. Clin. Invest. 109, 1551–1559 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown, R.L. et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J. Clin. Invest. 121, 1064–1074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lamouille, S., Connolly, E., Smyth, J. W., Akhurst, R. J. & Derynck, R. TGF-β-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J. Cell Sci. 125, 1259–1273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pollak, M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat. Rev. Cancer 12, 159–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Pietenpol, J. A. et al. TGF-β1 Inhibition of C-Myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRb binding domains. Cell 61, 777–785 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Adorno, M. et al. A Mutant-p53/SMAD complex opposes p63 to empower TGFβ-induced metastasis. Cell 137, 87–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Oft, M. et al. TGF-β1 and Ha-Ras collaborate in modulating the phenotypicplasticity and invasiveness of epithelial tumor cells. Genes Dev. 10, 2462–2477 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Smith, A. P. et al. A positive role for Myc in TGFβ-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene 28, 422–430 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y. E. Non-SMAD pathways in TGF-β signaling. Cell Res. 19, 128–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Muraoka-Cook, R. S. et al. Activated type I TGFβ receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene 25, 3408–3423 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Parvani, J. G., Taylor, M. A. & Schiemann, W. P. Noncanonical TGF-β signaling during mammary tumorigenesis. J. Mammary Gland Biol. Neoplasia 16, 127–146 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lonn, P., Moren, A., Raja, E., Dahl, M. & Moustakas, A. Regulating the stability of TGFβ receptors and SMADs. Cell Res. 19, 21–35 (2009).

    Article  PubMed  Google Scholar 

  18. De Boeck, M. & ten Dijke, P. Key role for ubiquitin protein modification in TGFβ signal transduction. Ups J. Med. Sci. 117, 153–165 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Lin, X., Liang, M. & Feng, X. H. SMURF2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of SMAD2 in transforming growth factor- β signaling. J. Biol. Chem. 275, 36818–36822 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y., Chang, C. B., Gehling, D. J., Hemmati-Brivanlou, A. & Delynck, R. Regulation of SMAD degradation and activity by SMURF2, an E3 ubiquitin ligase. Proc. Natl Acad. Sci. USA 98, 974–979 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lo, R. S. & Massague, J. Ubiquitin-dependent degradation of TGF-β-activated SMAD2. Nat. Cell Biol. 1, 472–478 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Nijman, S. M. B. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Yuan, J., Luo, K. T., Zhang, L. Z., Cheville, J. C. & Lou, Z. K. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140, 384-U121 (2010).

    Article  Google Scholar 

  25. Williams, S. A. et al. USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell 146, 917–929 (2011).

    Article  Google Scholar 

  26. Nakada, S. et al. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466, 941-U959 (2010).

    Article  Google Scholar 

  27. Inui, M. et al. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat. Cell Biol. 13, 1368-U1187 (2011).

    Article  Google Scholar 

  28. Kavsak, P. et al. SMAD7 binds to SMURF2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Molecular Cell. 6, 1365–1375 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki, C. et al. SMURF1 regulates the inhibitory activity of SMAD7 by targeting SMAD7 to the plasma membrane. J. Biol. Chem. 277, 39919–39925 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Eichhorn, P. J. et al. USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat. Med. 18, 429–435 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, F. et al. Ubiquitin-specific protease 4 mitigates Toll-like/interleukin-1 receptor signaling and regulates innate immune activation. J. Biol. Chem. 287, 11002–11010 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guglielmo, G. M. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat. Cell Biol. 5, 410–421 (2003).

    Article  PubMed  Google Scholar 

  33. Zhang, X. N., Berger, F. G., Yang, J. H. & Lu, X. B. USP4 inhibits p53 through deubiquitinating and stabilizing ARF-BP1. EMBO J. 30, 2177–2189 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. He, S. et al. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J. Pathol.http://dx.doi.org/10.1002/path.4013 (2012).

  37. Kang, Y. B. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Bandyopadhyay, A. et al. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor- β type I receptor kinase inhibitor. Cancer Res. 66, 6714–6721 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tran, H., Brunet, A., Griffith, E. C. & Greenberg, M. E. The many forks in FOXO’s road. Sci STKE 2003, RE5 (2003).

  41. Freeman, A. K. & Morrison, D. K. 14-3-3 Proteins: diverse functions in cell proliferation and cancer progression. Semin. Cell Dev. Biol. 22, 681–687 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wada, K. & Kamitani, T. UnpEL/Usp4 is ubiquitinated by Ro52 and deubiquitinated by itself. Biochem. Biophys. Res. Commun. 342, 253–258 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fan, Y. H. et al. USP4 targets TAK1 to downregulate TNFα-induced NF-κB activation. Cell Death Differ. 18, 1547–1560 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiao, N. et al. Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNF α-induced cancer cell migration. Biochem. J. 441, 979–986 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Inui, M. et al. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat. Cell Biol. 13, 1368–1375 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Conery, A. R. et al. AKT interacts directly with SMAD3 to regulate the sensitivity to TGF-β-induced apoptosis. Nat. Cell Biol. 6, 366–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Remy, I., Montmarquette, A. & Michnick, S. W. PKB/AKT modulates TGF-β signalling through a direct interaction with SMAD3. Nat. Cell Biol. 6, 358–365 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Daly, A. C., Vizan, P. & Hill, C. S. SMAD3 protein levels are modulated by Ras activity and during the cell cycle to dictate transforming growth factor- β responses. J. Biol. Chem. 285, 6489–6497 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Han, S. U. et al. Loss of the SMAD3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene 23, 1333–1341 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Cohen, P. & Tcherpakov, M. Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143, 686–693 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Strausberg, R. L., Feingold, E. A., Klausner, R. D. & Collins, F. S. The mammalian gene collection. Science 286, 455–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Cao, Y., Zhao, J., Sun, Z. H., Postlethwait, J. & Meng, A. M. fgf17b, a novel member of Fgf family, helps patterning zebrafish embryos. Dev. Biol. 271, 130–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, L. X. et al. Zebrafish Dpr2 inhibits mesoderm induction by promoting degradation of nodal receptors. Science 306, 114–117 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Prince, V. E., Price, A. L. & Ho, R. K. Hox gene expression reveals regionalization along the anteroposterior axis of the zebrafish notochord. Dev. Genes Evol. 208, 517–522 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. White, R. M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, L. M. J., Seftor, E. A., Bonde, G., Cornell, R. A. & Hendrix, M. J. C. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev. Dynam. 233, 1560–1570 (2005).

    Article  CAS  Google Scholar 

  58. Nakao, A. et al. Identification of SMAD7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 389, 631–635 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, L. et al. Fas-associated factor 1 antagonizes Wnt signaling by promoting beta-catenin degradation. Mol. Biol. Cell 22, 1617–1624 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to M. van Dinther for performing the 125I–TGF-β labelling experiment, A. Teunisse and A. G. Jochemsen (Leiden University Medical Center, Leiden, The Netherlands) for 14-3-3 expression plasmids and purification of GST 14-3-3 fusion proteins, and H. van Dam for critical reading of the manuscript. We thank K. Iwata, S. Lin and S. Piccolo for reagents. This work was supported by a Netherlands Organization of Scientific Research grant (MW-NWO 918.66.606) and the Centre for Biomedical Genetics.

Author information

Authors and Affiliations

Authors

Contributions

L.Z., F.Z. and P.t.D. conceived and designed the experiments; L.Z. and F.Z. carried out the biochemical and functional assays in cells. Y.D., with help from E.S.-J., performed the zebrafish assays. R.G. and H.H. conducted the zebrafish embryo assays, C.M., K-A.S. and C.X.L. performed the genome-wide gain-of-function screen and J.A.P. and C.X.L. analysed the results. L.Z., F.Z. and P.t.D. wrote the manuscript.

Corresponding authors

Correspondence to FangFang Zhou or Peter ten Dijke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2109 kb)

Supplementary Table 1

Supplementary Information (XLS 30 kb)

Supplementary Table 2

Supplementary Information (XLS 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Zhou, F., Drabsch, Y. et al. USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat Cell Biol 14, 717–726 (2012). https://doi.org/10.1038/ncb2522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2522

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer